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Abstract: This project aims to solve a two-dimensional steady-state di�usion problem by means
of a home-made Finite Volume Method (FVM) code. This project solves the two-dimensional
steady-state heat conduction equation over a plate whose bottom comprises di�erent-sized �ns in
order to investigate the temperature distribution within a non-uniform rectangular domain. The
plate is subject to constant temperatures at its edges. A code was developed to implement the
FVM and obtain the temperature distribution over the domain. The code is structured according
to the main CFD analysis steps: pre-processing, solution of equations, and post-processing. The
set of equations were solved using the iterative Conjugate Gradient Method (CGM). Moreover, the
problem was analyzed in ANSYS FLUENT R© and the outputs of the two methods are compared.
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1 Introduction

Heat transfer is an important problems in many disciplines including science, physics, and engineering.
Various numerical techniques have been developed in order to solve and simulate real-world heat transfer
problems, among which the FVM. In this project, the FVM is implemented to compute the temperature
distribution over a plate, �nned at its bottom edge, and subject to prescribed boundary temperatures. A
home-made code was developed to implement the numerical technique. The system of equations arising
from the discretization of the governing equation is solved iteratively by means of the CGM. The obtained
temperature distribution is then compared with the output of a commercial code, ANSYS FLUENT R©,
and a comparative analysis of the two solutions will be presented.

2 Problem Statement

The governing transport equation for a two-dimensional steady-state di�usion problem is given by:
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where x, y are the space dimensions, Γ is the di�usion coe�cient, Φ is the di�usive �ux, and SΦ is a
source term [2]. For the special case of steady-state heat conduction without volumetric heat generation,
and the di�usive �ux is the temperature T , (2.1) has the following form:
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where k is the material thermal conductivity.
The geometry of the problem is shown in the following �gure:
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Figure 1: Plate Geometry and Dimensions

The temperatures at the edges are as follows:
Ttop = 500◦C, Tleft = 400◦C, Tright = 300◦C, Tbottom = 200◦C.

3 Solution Approach

3.1 Governing equation

Since the material has a constant thermal conductivity k = 1000W/(m.K), (2.2) can be rewritten as:

∇2T =
∂2T

∂x2
+
∂2T

∂y2
= 0 (3.1)

The above equation is the two-dimensional Laplace's equation to be solved for the temperature �eld.
(3.1) is a linear, homogeneous, elliptic partial di�erential equation (PDE) governing an equilibrium
problem, i.e., steady-state heat conduction, within a closed domain.

3.2 The Finite Volume Method (FVM)

The following assumptions are made to ensure the two-dimensionality of the problem:

• The plate has a uniform thickness.

• There is no heat transfer through the thickness.

The fundamental step in the FVM is the integration of the transport equation (2.1) over a control
volume. The domain is discretized into cells or control volumes as shown in Figure 2 to approximate
the di�erential equation. The values of the desired properties are evaluated at the center of the control
volume.
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Figure 2: Domain Discretization

The integration of (2.1) over a control volume yields:∫
∆V
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In this case, the grid is uniform so all the cell faces have the same area A.
The integrated form of the above equation is:[
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where the subscripts e, w, n, and s denote East, West, North, and South respectively.
The �uxes through the cell faces are approximated by a �rst-order �nite di�erence formulation as follows:
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where P denotes the center of the control volume at which the property Φ is to be evaluated, and δxWP

denotes the distance between the west face and the cell center.
Substituting the obtained relations into (3.3) yields:
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The domain is discretized into square cells of side length dx and dy with dy = dx. Since, for the case at
hand, the source term is absent, i.e, no heat generation by the plate, and that the di�usion coe�cient is
k, (3.8) becomes:
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The above equation represents the discretization of the governing transport equation at the cell centers,
within the domain boundaries. The discretization of the temperature gradients in (3.3) requires a special
treatment since for the cell adjacent to an edge boundary, its center is located at dx/2 or dy/2 from the
boundary in a uniform grid.
The discretized domain is shown in the following �gure:
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Figure 3: Meshed Plate

The plate was meshed using ANSYS Meshing module.
The discretization of the governing equation at an internal node is performed by considering all the
surrounding cell centers, as shown in the following �gure:

Figure 4: Discretization Process

The plate is uniformly discretized in a two-dimensional Cartesian coordinate system. Indexing the
node of interest by (i, j),the discretization of the governing transport equation for the cell at the bottom
left corner is as follows:
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3.3 System of Equations

The resulting set of algebraic equations can be put into a matrix equation of the form:

Ax = b (3.11)
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where A is the coe�cient matrix, x is the vector of nodal temperatures, and b is the right-hand-side
vector.
The coe�cient matrix A has the following properties:

• A is square of size N ×N , N is the number of equations.

• A is a banded tridiagonal matrix.

• A is sparse.

4 Numerical Implementation

The solution of the matrix equation requires appropriate numerical techniques since A is large and
sparse, so as to reduce the computational cost. Matrix equations are chie�y solved using direct methods
or iterative methods. Direct methods are computationally costly since the number of operations to reach
a solution is of the order of N3, which requires a high amount of storage. In contrast, iterative methods
are more advantageous since they require fewer number of operations.
Various numerical techniques can be used to solve the matrix equation. Two of these were considered in
this project: the Gauss-Seidel method (GSM) and the Conjugate Gradient method.

• The Gauss-Seidel method
This method starts with an initial guess of the solution and uses updated values as soon as these
are available. It is commonly used for the solution of linear systems of equations.

• The Conjugate Gradient Method
The CGM belongs to a family of numerical methods referred to as Krylov subspace methods,i.e.,at
every iteration step k, the methods searches for a good approximation to the solution of (3.11)
from the subspace span{b,Ab,A2b, ...,Ak−1b} [3].

4.1 Code Structure

The structure of the script is as follows:

• The user is asked to enter n, the number of divisions along the top edge. The coe�cient matrix is
of size n2 × n2 . For this problem, it is desired to obtain the temperature distribution for n = 100.

• The edge lengths, problem constants, along with boundary temperatures are de�ned as constants.

• A and B are preallocated, B is of size n2 × 1.

• The matrices are �lled with the coe�cients of the discretized equations.

• The plate was considered as a full square to simplify the problem. The empty cells are assigned
constant temperatures so that the desired solution will not be a�ected.

• The initial guess vector is de�ned along with the tolerance, and the maximum number of iterations.

• The matrix A is checked for symmetry and positive de�niteness. If both conditions are satis�ed,
the CGM is implemented as the iterative scheme, and the GS otherwise.

• The solver iterates until the desired tolerance is reached by the residual.

• The obtained temperature vector is reshaped into a square matrix required for plotting the tem-
perature distribution.

• The coordinates of the nodes are de�ned and a grid of the domain is generated and the temperature
distribution is then plotted.
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5 Results and Discussion

5.1 Temperature Distribution

The following �gure shows the temperature distribution obtained with the developed FVM code and
FLUENT R©:

Figure 5: Temperature Distribution from code (left) and FLUENT R© (right)

It can be seen that the temperature distribution from the developed code is similar to the one from
FLUENT R©.

5.2 Quantitative Comparison

A comparative analysis of the two solutions was performed by probing the contour plots. The locations of
the points were arbitrarily selected and the corresponding temperature values recorded. The FLUENT R©

results were obtained from CFD-Post. The following table shows the temperature values from the code
and ANSYS FLUENT R©, at random coordinates.
In order to assess the accuracy of the numerical solution, a quantitative comparison was performed by
probing random temperature values within the domain in the two solutions. The data are summarized
in the following table:

Table 1: Probed Data Comparison

x (m) y (m) FVM temperature (◦C) FLUENT R© temperature (◦C) Percentage di�erence (%)
0.055 0.135 320.108 320.107 3.0× 10−4

0.205 0.795 414.92 414.995 2.3× 10−2

0.355 0.595 326.84 326.97 4.0× 10−2

0.675 0.725 348.33 348.405 2.15× 10−2

0.845 0.915 426.006 426.015 2.0× 10−5

0.955 0.825 325.244 325.251 2.15× 10−3

The table suggests that the developed program yields accurate results, compared to the FLUENT R©

outputs, as the errors are less than 1%.

5.3 Comparison between Iterative Methods

To further assess the performance of the CGM, the solution times of the CGM, the Gauss-Seidel Method,
and the Underrelaxation Method are compared:
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Table 2: Probed Data Comparison

Iterative Method Solution Time (sec)
CGM 0.570

Gauss-Seidel (ω=1) 163.72
Underrelaxation (ω=0.8) 243.517

It can be said that the CGM has a signi�cantly fast convergence compared to the other iterative methods
considered.

6 Conclusion and Future Work

This paper investigated a two-dimensional, steady-state conductive heat transfer problem using numerical
method. The latter implements the FVM and the system of equations is solved using the Conjugate
Gradient iterative method. The numerical solution was then compared with the solution from ANSYS
FLUENT R©, and it was observed that the code is highly accurate and the computation time was small.
As future work, it is desired to develop a more generic program that can solve di�erent types of heat
transfer problems.
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