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Abstract: In the Cartesian grid approach, the immersed boundary method (IBM) is well used
to handle the flow around an object with a complicated shape. In this paper, in order to remove
the unphysical pressure oscillations that appear in the conventional IBM, a new IBM approach is
proposed. In the conventional IBM with the direct forcing, the unphysical pressure oscillations
appear near the virtual boundary because of the pressure jump between inside and outside of the
virtual boundary. In the present IBM approach, the velocity and pressure values inside the virtual
boundary are not used. Therefore, the pressure jump, i.e., the cause of the pressure oscillations,
does not appear. In the present IBM approach, when the pressure gradient value near the virtual
boundary is calculated, the virtual pressure value inside the virtual boundary is estimated by
considering the pressure condition on the virtual boundary. The present IBM approach is verified
by the flows around a 2D circular cylinder which is a basic shape with curvilinear boundary. Then,
it is concluded that the present IBM approach is very effective to remove the pressure oscillations
that appear in the conventional IBM.
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1 Introduction
In recent years, many numerical simulations for the flow around an object with a complicated shape on
the Cartesian coordinates are performed. Conventionally, the boundary fitted coordinates are adopted for
the flow around an object with complicated shape. However, the boundary fitted coordinates require grid
generation according to the object shape. As a result, the grid generation may consume a huge time for more
complicated shapes. On the other hand, in the Cartesian coordinates, it is not necessary to newly generate
the computational grid, even if the object with various shapes is included in the computational domain.
Therefore, the Cartesian coordinates are efficient to simulate the flow around an object with complicated
shape.

In the Cartesian grid approach, the immersed boundary method (IBM)[1] is well used to handle the flow
around an object with a complicated shape. In the IBM, the boundary of the object is considered to be a
cluster of virtual boundary point. In order to satisfy the velocity condition on the virtual boundary, e.g., the
non-slip condition, the IBM requires only the additional forcing term in the momentum equations. Therefore,
it is easy to apply the IBM to the object with complicated shape. In the estimation of the forcing term, the
direct forcing[2] is generally adopted. However, the conventional IBM with the direct forcing generates the
unphysical pressure oscillations near the virtual boundary because of the pressure jump between inside and
outside of the virtual boundary. In order to remove the unphysical pressure oscillations, the seamless IBM
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(SIBM)[3] was proposed. In the SIBM, the forcing term is added not only on the grid points near the virtual
boundary but also in the region inside the virtual boundary. So far, many numerical simulations using the
SIBM were performed successfully[4, 5]. In addition, the SIBM was also applied to the flow around a moving
and deformable object[6]. However, in this simulation, only forced deformation of the object is considered.
If the object is deformed by receiving force from the surrounding fluid, the exact prediction of the velocity
condition inside the virtual boundary, which is necessary to estimate the forcing term, is difficult. In this
paper, in order to remove the unphysical pressure oscillations, a new IBM approach which is not necessary
to use the values (velocity and pressure) inside the virtual boundary is proposed. Therefore, the pressure
jump i.e., the cause of the pressure oscillations, does not appear. In the present IBM approach, when the
pressure gradient values near the virtual boundary is calculated, the virtual pressure values inside the virtual
boundary is estimated by considering the pressure condition on the virtual boundary. Ikeno et al.[7] and
Sato et al.[8] estimated the pressure gradient values near the virtual boundary by using interpolation of
the pressure gradient values on the virtual boundary. However, in these papers, the pressure condition on
the virtual boundary is simplified. In the estimation of the pressure gradient on the virtual boundary, the
component values in the coordinate axis direction which there is the virtual boundary are assumed to be
zero. For example, if there is the virtual boundary in the x direction, the pressure gradient on the virtual
boundary is estimated to ∂p

∂x = 0. In this paper, the pressure gradient in the normal direction on the virtual
boundary is considered to be zero ( ∂p∂n = 0 ; n denotes the normal direction at the virtual boundary). In
the present IBM approach, the pressure gradient values near the virtual boundary are estimated by using
the virtual pressure values considering the pressure condition on the virtual boundary. Nishida[9] estimated
the temperature values satisfying the temperature condition on the virtual boundary by using the Taylor
series expansion. In the present IBM approach, the pressure values on the virtual boundary are estimated
in reference to the method of Nishida. In this paper, it is discussed the removal property of the pressure
oscillations in the present IBM approach.

2 Immersed Boundary Method

2.1 Governing equations
The non-dimensional continuity equation and incompressible Navier-Stokes equations are written as,

∂ui
∂xi

= 0, (1)

∂ui
∂t

= Fi −
∂p

∂xi
+Gi, (2)

where, Re denotes the Reynolds number defined by Re = L0U0/ν0. U0, L0 and ν0 are the reference velocity,
the reference length and the kinematic viscosity, respectively. ui = (u, v) and p are the velocity components
and the pressure. Gi in the momentum equations denotes the additional forcing term for the IBM. Fi denotes
the convective and diffusion terms.

Fi = −uj
∂ui
∂xj

+
1

Re

∂2ui
∂xj∂xj

. (3)

2.2 Numerical method
The incompressible Navier-Stokes equations (2) are solved by the second order finite difference method on the
collocated grid arrangement. The convective, diffusion and pressure terms are discretized by the conventional
second order centered finite difference method. For the time integration, the fractional step approach [10]
based on the forward Euler method is applied. For the incompressible Navier-Stokes equations in the IBM,
the fractional step approach can be written by

u∗i = uni + ∆tFn
i , (4)

un+1
i = u∗i + ∆t

(
−∂p

n

∂xi
+Gn

i

)
, (5)
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where u∗i denotes the fractional step velocity and ∆t is the time increment. The resulting pressure equation
is solved by the BiCGSTAB method. In this paper, the convergence criterion of the pressure equation is
1.0× 10−6. Also, when the number of iterations is over 8000 times, the convergence criterion is 1.0× 10−5.
Then, the conservation of mass is satisfied in the range of convergence criterion of the pressure equation.

2.3 Forcing term estimation
In order to adopt the IBM, the additional forcing term in the momentum equations, Gi, should be estimated.
There are mainly two ways, that is, the feedback[11, 12] and direct[2] forcing term estimations. In this paper,
the direct forcing term estimation is adopted.

The direct forcing term estimation is shown in Fig. 1. In the figure, I, J are the grid index. The forcing
term can be determined by

Gn
i = −Fn

i +
∂pn

∂xi
+
Ūn+1
i − uni

∆t
, (6)

where Ūn+1
i denotes the linearly interpolated velocity. Namely, the forcing term is specified as the velocity

components at next time step satisfy the relation, un+1
i = Ūn+1

i . In the forcing term estimation for the
IBM, the grid points added forcing term are restricted near the virtual boundary only. In this approach, the
non-negligible velocity appears inside the virtual boundary. Also, the pressure distributions near the virtual
boundary show the unphysical oscillations because of the pressure jump. In the present IBM approach, the
governing equations are solved only outside the virtual boundary by considering the pressure condition on
the virtual boundary in order to avoid the pressure jump.

Figure 1: Grid points added forcing terms.

2.4 Differential expression near the virtual boundary
For the pressure, the pressure condition on the virtual boundary ( ∂p∂n = 0) is considered. The pressure value
on the virtual boundary is estimated by using the Taylor series expansion. For example, in Fig. 2, the
pressure value on the virtual boundary point, vb, is estimated by using the Taylor series expansion in two
variables with reference to the points m = 1 to 3. In Fig. 2, n = (nx, ny) denotes the unit normal vector at
the virtual boundary point. The reference points are chosen from the surrounding grid points in the normal
direction. The relationship between pressure on the virtual boundary and reference points is approximated
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by

pm = pvb +

(
lmx

∂p

∂x

∣∣∣∣
vb

+ lmy
∂p

∂y

∣∣∣∣
vb

)
+

1

2

(
l2mx

∂2p

∂x2

∣∣∣∣
vb

+ 2lmxlmy
∂2p

∂x∂y

∣∣∣∣
vb

+ l2my

∂2p

∂y2

∣∣∣∣
vb

)
, (7)

where lmx, lmy are the distance components from the virtual boundary point to the reference points. The
pressure condition on the virtual boundary is written by

∂p

∂n

∣∣∣∣
vb

= nx
∂p

∂x

∣∣∣∣
vb

+ ny
∂p

∂y

∣∣∣∣
vb

= 0. (8)

By substituting the equation (8), the equation (7) is rewritten to

pm = pvb +

(
lmx −

nx
ny
lmy

)
∂p

∂x

∣∣∣∣
vb

+
1

2

(
l2mx − 2

nx
ny
lmxlmy +

n2x
n2y
l2my

)
∂2p

∂x2

∣∣∣∣
vb

. (9)

Then, the pressure value on the virtual boundary pvb can be determined by

pvb =
1

C
[(A2B3 −A3B2)p1 + (A3B1 −A1B3)p2 + (A1B2 −A2B1)p3] , (10)

Am = lmx −
nx
ny
lmy, (11)

Bm =
1

2

(
l2mx − 2

nx
ny
lmxlmy +

n2x
n2y
l2my

)
, (12)

C = A1(B2 −B3) +A2(B3 −B1) +A3(B1 −B2). (13)

The pressure value on the grid point (I − 1, J) is calculated by

pI−1,J =
(|lm1| −∆x)pvb + ∆xpI,J

|lm1|
, (14)

where, ∆x is the grid spacing in the x direction. As a result, discretization on the grid point (I,J) is handled
in the same manner as other grid points by using the calculated pressure value pI−1,J . In this study, the
pressure equation is solved by fixing the pressure value obtained by the above procedure.

For the velocity, the velocity gradient on the grid point (I, J) near the virtual boundary is represented
by one-sided difference written in

∂u

∂x

∣∣∣∣
I,J

=
−3uI,J + 4uI+1,J − uI+2,J

2∆x
. (15)

3 Flow around a 2D stationary circular cylinder
In order to validate the present IBM approach, the flow around a 2D stationary circular cylinder is considered.
The computational domain is shown in Fig. 3. Diameter of the circular cylinder is D = 1 and θ is an angle
from rear stagnation point of the circular cylinder. The computational grid is the hierarchical Cartesian grid.
In this paper, the simulation is performed on three grids to investigate the influence of the grid resolution.
The grid resolutions near the virtual boundary are ∆ = ∆x = ∆y = 0.025, 0.0125 and 0.00625 respectively.
The time increment is ∆t = 0.001, 0.0005 and 0.00025 in each simulation. The impulsive start determined
by the uniform flow (u = 1, v = 0) is adopted. On the inflow boundary, the velocity is fixed by the uniform
flow and the pressure is imposed by the Neumann condition obtained by the normal momentum equation.
The velocity is extrapolated from the inner points and the pressure is obtained by the Sommerfeld radiation
condition[13] on the outflow and side boundaries. On the virtual boundary, the velocity condition is the
non-slip (u = 0, v = 0) condition. The Reynolds number is set as Re = 40 and 200.

Figure 4 shows the pressure coefficient Cp distributions at each grid resolution in Re = 40. The pressure
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Figure 2: Handlling near the virtual boundary.

Figure 3: Computational domein for 2D stationary circular cylinder.

values on the virtual boundary is interpolated from the grid points around the virtual boundary. At ∆ =
0.025, the oscillations of the pressure coefficient appear because of coarse resolution. On the other hand,
at ∆ = 0.0125 and 0.0625, the pressure oscillations do not appear and the pressure coefficients are in good
agreement with each other. In Table 1, the drag coefficient, the wake length and the pressure difference
between front and rear stagnation points are shown with the reference results[14, 15]. In this paper, the drag
coefficient is estimated by

CD =

∫
b
pxds+

∫
b
τxds

1
2ρ0U

2
0S

, (16)

where b denotes the virtual boundary, px and τx denote the x direction components of the interpolated
pressure and shear stress on the circular cylinder surface. ρ0 and U0 denote the reference density and
velocity of the flow. In particular, the results at ∆ = 0.0125 and 0.00625 are in good agreement with each
other. Furthermore, it is found that the present IBM results are in good agreement with the reference ones.
Figure 5 shows the pressure contours at ∆ = 0.0125. Near the virtual boundary, the pressure oscillations
do not appear, and the smooth pressure distribution is obtained. Also, it is speculated that the pressure
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condition on the virtual boundary is satisfied from the pressure distribution near the virtual boundary.

Figure 4: Pressure coefficient distributions for 2D stationary circular cylinder (Re = 40).

Table 1: Comparison of characteristic quantities for 2D stationary circular cylinder (Re = 40).

CD LV /D PE

∆ = 0.025 1.517 2.300 0.858

∆ = 0.0125 1.541 2.310 0.854

∆ = 0.00625 1.553 2.310 0.854

Nishida et al.[3] (SIBM) 1.501 2.336 0.847

Dennis et al.[14] 1.522 2.345 0.826

Fornberg[15] 1.498 2.240 0.800

Figure 6 shows the pressure coefficient distributions on each grid in Re = 200 at the time which the lift
coefficient is maximum. At ∆ = 0.025, the pressure oscillations appear. However, at ∆ = 0.0125 and 0.0625,
the pressure oscillations do not appear and the pressure coefficients are in good agreement with each other.
In Table 2, the time-averaged drag coefficient, the amplitude of lift coefficient and the Strouhal number are
shown with the reference results[3, 16]. The lift coefficient is estimated by

CL =

∫
b
pyds+

∫
b
τyds

1
2ρ0U

2
0S

, (17)

where py and τy denote the y direction components of the interpolated pressure and shear stress on the
circular cylinder surface. It is found that the present IBM results are in good agreement with the reference
ones. Figure 7 shows the pressure contours at ∆ = 0.0125. In the unsteady flow field, very smooth pressure
distribution is obtained. Then, it can be found that the present IBM approach is effective to remove the
pressure oscillations that appear in the conventional IBM.
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(Overall view) (Close-up view)

Figure 5: Pressure contours for 2D stationary at ∆ = 0.0125 (Re = 40).

Figure 6: Pressure coefficient distributions for 2D stationary circular cylinder (Re = 200).

Table 2: Comparison of characteristic quantities for 2D stationary circular cylinder (Re = 200).

C̄D CLamp
St

∆ = 0.025 1.257 0.615 0.200

∆ = 0.0125 1.349 0.682 0.199

∆ = 0.00625 1.359 0.697 0.199

Nishida et al.[3] (SIBM) 1.316 0.677 0.200

Rosenfeld[16] 1.329 0.674 0.197

4 Flow around a 2D oscillating circular cylinder
In order to validate the present IBM approach for the moving boundary problem, the flow around a 2D
oscillating circular cylinder is considered. The computational domain is shown in Fig. 8. The circular
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(Overall view) (Close-up view)

Figure 7: Pressure contours for 2D stationary circular cylinder at ∆ = 0.0125 (Re = 200).

cylinder in the uniform flow moves vertically as,

x(t) = x0, (18)

y(t) = y0 +
yamp

2
sin(2πft), (19)

where x(t), y(t) are location of the circular cylinder at non-dimensional time t. The initial location of the
circular cylinder is (x0, y0) = (10.5, 10.5). yamp/2, f denote the amplitude and the frequency. In this paper,
these are set as yamp/2 = 0.2 and f = 0.2. The computational grid is the hierarchical Cartesian grid. The
grid resolution is set as ∆ = 0.0125 at near the circular cylinder from the results of simulation of the flow
around a stationary circular cylinder. The time increment is set as ∆t = 0.001. The initial and boundary
conditions are the same as the previous simulation. On the virtual boundary, the velocity of the moving
circular cylinder (u = 0, v = dy

dt ) is considered. The Reynolds number is set as Re = 200.

Figure 8: Computational domein for 2D oscillating circular cylinder.

Figure 9 shows the pressure contours at t = 113.75 and 115. At t = 113.75, the circular cylinder is
located at the bottom dead center (y = 10.3). At t = 115, the circular cylinder is located at the initial
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position (y = 10.5) and is moving upward. Figure 10 shows the pressure coefficient distribution in Re = 200
at t = 115. In Fig. 9, it can be observed that smooth pressure distribution is obtained. In Fig. 10, the
oscillations of the pressure coefficient appear but the scale is very small.

(Overall view) (Close-up view)

(a) t=113.75

(Overall view) (Close-up view)

(b) t=115

Figure 9: Pressure contours for 2D oscillating circular cylinder at ∆ = 0.0125 (Re = 200).

In Fig. 11, the time history of the drag and lift coefficients are shown. In Table 3, the time-averaged drag
and lift coefficients and the Strouhal number are shown with the reference results[17]. The time-averaged
drag coefficient is in good agreement with the reference result. However, the non-negligible oscillations of the
drag and lift coefficients appear in Fig. 11. This is because the forcing points change by moving the virtual
boundary. As a result, the amplitude of the lift coefficient in Table 3 is larger than the reference result.
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Figure 10: Pressure coefficient distribution for 2D oscillating circular cylinder (Re = 200).

Table 3: Comparison of characteristic quantities for 2D oscillating circular cylinder (Re = 200).

C̄D CL St

Present 1.55 ± 0.76 0.20

Wu et al.[17] 1.58 ± 0.58 0.20

Figure 11: Time history of drag and lift coefficients for 2D oscillating circular cylinder (Re = 200).

5 Concluding Remarks
In this paper, in order to remove the unphysical pressure oscillations, a new IBM approach which is not
necessary to use the values (velocity and pressure) inside the virtual boundary was proposed. In the present
IBM approach, when the pressure gradient value near the virtual boundary is calculated, the virtual pressure
value inside the virtual boundary is estimated by considering the pressure condition on the virtual boundary.
In order to validate the present IBM approach, the numerical simulations of incompressible flow around a
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2D circular cylinder which is a basic shape with curvilinear boundary were considered. Firstly, the present
IBM approach was applied to a 2D stationary circular cylinder at some grid resolutions (∆ = 0.025, 0.0125
and 0.00625). At ∆ = 0.025, the oscillations of the pressure coefficient appear. On the other hand, at
∆ = 0.0125 and 0.0625, the pressure oscillations did not appear and the pressure coefficients were in good
agreement with each other. Furthermore, these results were in good agreement with the reference ones.
Then, it is concluded that the present IBM approach is very effective to remove the pressure oscillations
that appear in the conventional IBM. Secondly, the present IBM approach was applied to the flow around
a 2D oscillating circular cylinder. The resulting time-averaged drag coefficient was in good agreement with
reference result. However, the oscillations of the resulting coefficients associated with time appeared. This
is because the forcing points change by moving the virtual boundary. Therefore, in the case of applying the
present IBM approach to the moving boundary problem, it is necessary to consider the treatment to reduce
the oscillations.
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