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Abstract: This paper describes a simple, stable and accurate finite volume transport 

scheme for convection-dominated flow simulations on grids featuring hanging nodes 

as a result of h-refinement. The method’s novelty is that it employs finite volume 

formulation to compute face fluxes of an Eulerian cell using the transport variable 

interpolated at its originating location obtained by Lagrangian formulation. While 

higher order interpolation schemes can yield better accuracy, this study uses bilinear 

interpolation to illustrate that the devised method is stable and preserves the shape 

of discontinuous fields. However, it yields non-monotonic variation which can be 

removed by limiters or reconstruction methods. Case studies, i.e. linear translation, 

rotational translation, deformation under pure shear and large deformation under a 

reversing vortex field, demonstrate scheme’s potential for interfacial flow 

simulations using level-set method.  
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1     Introduction 
 

Many flow problems tackle with the advection of a scalar, 𝜙, as defined below:  

𝜕𝜙

𝜕𝑡
+ 𝑢 ∇𝜙 = 0 (1) 

where 𝜙 can have discontinuities/sharp variations in space. There exists large number of techniques for 

finite volume, finite element and finite difference methods with a goal to obtain stable, non-dissipative 

solutions of the problem as defined in Eq. (1). Finite volume methods utilize integral form of Eq. (1) as 

given in Eq. (2).   

𝜕

𝜕𝑡
∫ 𝜙𝑑𝑉
𝑐𝑣

+ ∮ 𝜙 (u⃗ ∙ n̂)𝑑𝐴
𝑐𝑠

= 0 (2) 

The first term in Eq. (2) is typically replaced by cell averages while the second term requires 

evaluation of fluxes at the control surfaces, which can lead to numerical instabilities when a bias based 

on transport direction is not considered. Possible common methods that avoid such difficulties include 

donor-cell advection (or first order upwind), using piecewise linear interpolation, and slope/flux 

limiters. Among these, higher order methods require evaluation of nearby gradients for flux 

computation and bring cells other than those around the relevant face into the scheme. This brings 

algorithmic difficulties especially in multi-dimensional problems when the underlying mesh contains 

hanging nodes as a result of adaptive refinement.  

This study develops a simple, stable and a second order accurate scheme that is primarily suitable 

for locally refined curvilinear grids which may include cells with hanging nodes. The accuracy of the 
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proposed algorithm can be controlled by h-refinement rather than p-refinement.  

 

2 Numerical method 
 

Semi-Lagrangian methods utilize the exact solution of Eq. (1), which is given in Eq. (3), in flux 

calculations.  

𝜙𝑛+1(𝑥 ) = 𝜙𝑛(x⃗ − u⃗ 𝑡) (3) 

The flux at a given face is defined as follows: 

F𝑓 = 𝜙𝑓(u⃗ 𝑓 ∙ n̂𝑓)𝐴𝑓 (4) 

As the flux changes in time due to the change in 𝜙, u⃗  and n̂ for an arbitrary flow field, total flux 

can be approximated as follows: 

Φ𝑓|𝑛
𝑛+1

= ∫ F𝑓 𝑑𝑡
𝑡𝑛+1

𝑡𝑛
≈ 𝑤1𝐹

𝑛 + 𝑤2𝐹
𝑛+1/2 + 𝑤3𝐹

𝑛+1 (5) 

where 𝑤1, 𝑤2 and 𝑤3 are interpolation weights. It is a common approach to use 𝑤1 = 𝑤3 = 0 and 

𝑤2 = 1  to find higher order approximations. For instance, when the flux is computed in one-

dimensional space with a linear approximation for 𝜙𝑛+1/2 at x⃗ 𝑓 − u⃗ Δ𝑡/2 using 𝜙𝑛 of the current time 

step, it yields a second order Lax-Wendroff method [1].  

𝜙𝑝
𝑛+1 = 𝜙𝑝

𝑛 −
𝜆

2
(𝜙𝐸

𝑛 − 𝜙𝑊
𝑛 ) +

𝜆2

2
(𝜙𝐸

𝑛 − 2𝜙𝑃
𝑛 + 𝜙𝑊

𝑛 ) (6) 

where 𝜆 is the CFL number and defined as 𝑢Δ𝑡/Δ𝑥. In this study, weights are selected considering half 

weights at the next and current time step; i.e. 𝑤1 = 𝑤3 = 0.5 and 𝑤2 = 0; along with a second order 

Explicit Runge Kutta method.  

For higher dimensions, different interpolation schemes can be utilized to account for the direction 

of the velocity by shifting the vertices to a new location x⃗ 𝑣
𝑏 = x⃗ 𝑣

𝑎 − u⃗ 𝑣
𝑎Δ𝑡 to compute the fluxes at their 

new locations [2–6]. 

This study adopts interpolation zones for each vertex, to ease estimation of any field variable at an 

arbitrary location. The interpolation zones are illustrated in Fig. (1) using dashed lines for a given vertex 

indicated by a void circle marker. Fig. (1) also indicates storage locations using filled circles at cell-

centers where all variables, 𝜙 and �⃗� ; and face centers (𝑓) are marked with void plus markers. Present 

scheme use bilinear interpolation method for estimating the transport variable at this arbitrary location.  
 

3 Results  
 

A scalar function which varies between 0 and 1 is utilized to represent various geometries. The 

value of the scalar function is 1 in every cell inside the geometry while it is set to zero everywhere outer 

domain. The shape of the geometry is determined exactly at a value of 0.5. Four case studies are 

considered: (i) linear translation, (ii) rotational translation, (iii) deformation under shear, and (iv) large 

deformation of a circular interface under a vortex-field.   

Figure (2) compares the results of linear translation at 𝑡 = 0, 𝑡 = 0.5𝑡𝑓 and 𝑡 = 𝑡𝑓 for first order 

  
Figure 1: a) Interpolation zone governed by a vertex; b) interpolation of level contours after shifting 

vertices on characteristic lines 
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upwind FOU and semi-Lagrangian method (SML). It is clear that the diffusion in FOU causing the 

geometry to diffuse is reduced in semi-Lagrangian method.  

 

   

   
Figure 2: Linear translation. Results in the top row are obtained using FOU, while those in the bottom 

row are obtained using SLM 

Figure (3) compares the results of linear rotation for first order upwind and semi-lagrangian 

method. They both lose geometric information during 90 degree rotation. Also SML is observed to 

produce spurious oscillation in 𝜙 inside the geometry causing more refined cells.  

   

   
Figure 3: Linear rotation. Results in the top row are obtained using FOU, while those in the bottom 

row are obtained using SLM 

Figure (4) compares the results of deformation under shear. FOU and SLM both produce 

reasonable results.  
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Figure 4: Deformation under shear. Results in the top row are obtained using FOU, while those in the 

bottom row are obtained using SLM 

Figure (5) shows the large deformation case; in which the velocity field changes in time as contrast 

to previous cases. The velocity field in unit square is defined as follows:  

𝑢 = 𝑢𝑜 sin(𝜋𝑦) cos(𝜋𝑦) sin2(𝜋𝑥)cos (𝜋𝑡 𝑡𝑓⁄ ) (7) 

𝑣 = 𝑣𝑜 sin(𝜋𝑥) cos(𝜋𝑥) sin2(𝜋𝑦)cos (𝜋𝑡 𝑡𝑓⁄ ) (8) 

A circle is placed at 𝑥 = 0.5 and 𝑥 = 0.7, deformed under the velocity field. As the velocity field 

smoothly reverses in time, the circle is expected to be recovered at the end of the simulation (𝑡 = 𝑡𝑓). 

As it can be seen from Fig. (5), first order upwind diffuses so fast that the contour at 𝜙 = 0.5 disappears 

very quickly. On the other hand, SML recovers a circular shape with reasonable error. The refinement 

density is also observed to be much smaller in SML than FOU.  

     

     
Figure 5: Large deformation of a circle in a reversing vortex field. Results in the top row are obtained 

using FOU, while those in the bottom row are obtained using SLM 

4 Conclusion and Future Work 
 

In this short paper, semi-Lagrangian advection scheme is investigated for its use in adaptively refined 

grids with hanging nodes. The scheme is found to be promising as it is simple to implement. Further 

improvement on the order of the interpolation scheme is expected to increase method’s order of 

accuracy.  
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