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Abstract: The new approach proposed here, improves the stability of unstructured mesh finite-
volume CFD calculations by moving vertices in the mesh as a posteriori process. In this process, we
exploit the gradients of eigenvalues with respect to the local changes in the mesh to find directions
and magnitudes of mesh perturbations that will make the Jacobian of a semi-discrete system of
equations negative semi-definite. This will ensure the energy stability of the system; consequently
resulting in convergence. Our numerical results have shown that the proposed method was able
to locate the problematic parts of the mesh responsible for instabilities as well as to modify the
glitches for several physical problems. It is conjectured that the failure of our method for some
specific problems is probably due to the insensitivity of these problems to local changes in the
mesh. In these cases, the effects of boundary conditions and modes of the physical features are
dominant.
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1 Introduction

As the capabilities of computational fluid dynamics software has grown, so too have the size and
complexity of the problems to which industrial users apply CFD. Even for expert users — who
understand how to generate meshes and choose flow solver options to get good solutions for routine
problems in their area of expertise — new large scale problems are challenging: trial and error are
required to identify and resolve important flow features and find a stable solution. Historically the
main tool for increasing the solution accuracy has been either employing grid refinement or high
order schemes. However, for real world application problems, the baseline simulation often pushes
the limits of available computing resources. Such studies are often prohibitive due to instability
issues. This problem is particularly challenging since commercial CFD software typically handles
complex problem geometries using unstructured meshes, for which accuracy and stability issues are
not as well understood as for structured meshes. Thereby, with this rapid development of high



order numerical methods comes the need for stability analysis. However, these studies are lagging
behind to fully understand and predict unstable features on general unstructured meshes; hence
to remedy them. The lack of rigorous analysis tools to fix the instabilities along with the larger
time steps and more complicated geometries for engineering purposes calls for a thorough stability
analysis.

The stability of numerical discretization methods depends not only on the methodology but also
on the mesh: bad features in a mesh far from any flow features of interest can still have a deleterious
effect on the stability or convergence of a CEFD solver. A thorough understanding of this connection
can provide guidance in the design of numerical methods or mesh generation that would improve
solver performance and robustness. In this paper, we use eigen-analysis to study and improve
the mathematical stability of the semi-discrete system of equations arising from unstructured mesh
space discretization. This analysis will hopefully enable us to predict instabilities and help to remedy
them prior to solving the problem. To the best of our knowledge, eigenvalue analysis has always
been used to find some upper bound and thresholds of stability such as energy stability analysis
which is attractive in both Finite element (e.g. [1]) and finite volume (e.g. [2, 3]) communities; and
it has never been applied to modify mesh or flow features as a controlling feedback tool to stabilize
an unstable case. With the aid of entropy and the notion that entropy should always increase, many
other stability schemes have also been developed. These methods (e.g. see [4, 5, 6] and the references
therein) utilize entropy variables to devise entropy stable schemes for nonlinear partial differential
equations. However, all these various works have failed to provide an interactive practical tool to
automatically stabilize a discretized linear or nonlinear PDE on a general unstructured mesh.

In this paper, we use eigen-analysis to study and improve the mathematical stability of the semi-
discrete system of equations arising from unstructured mesh finite volume space discretization. This
approach has its roots in energy analysis (e.g. [3, 7]). Energy stability for semi-discrete systems
requires that all eigenvalues have negative real part. Our goal is to stabilize a (linearized) PDE by
perturbing the mesh vertices locally. To do this, we must predict the stability prior to the mesh
modification and find the size and direction of mesh perturbation that improves stability. The
rest of this paper lays out as follows: in Section 2 we describe how the gradients of the spatial
semi-discrete Jacobian with respect to mesh vertices are calculated; in Section 3, the direct and
optimization approaches for finding the perturbation vector are explained; after specifying which
vertices to perturb in Section 4, the local mesh modification is applied to stabilize the unstable
problems in Section 5. Moreover in Section 6, in an alternative way to perturb the mesh we can
change the discretization by increasing the reconstruction stencil size of a collection of control
volumes to stabilize an originally unstable problem.

2 Gradients of the eigenvalues

From the energy stability analysis and the method of lines, we know that a (linear) PDE, discretized
in space, produces a coupled set of ODE’s such as:
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is stable if and only if the Jacobian matrix A = ‘g—fj‘ is negative semi-definite whereas we assume the

transient growth is negligible and remains zero. To obtain the semi-discrete Jacobian matrix, A,
for non-linear problems we use a lower order solution at the steady state to linearize the Jacobian
matrix.

In preliminary unpublished work, we realized that eigen-analysis of semi-discrete systems for re-
alistic finite volume discretization can accurately predict the convergence rate for an implicit solver.
This revelation motivated us to use eigen-analysis to show stability and gradients of eigenvalues to
predict how spectral stability will change upon changes in the mesh. In other words, the key to our
work is the ability to predict changes in the eigenvalues with changes in the mesh. The derivatives of
eigenvalues and eigenvectors of general matrices dependent on multiple variables have been studied
by many (e.g. see [8, 9] and references therein). If the matrix eigenvalue problem of interest is
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where 2; is the *" right eigenvector associated with the s, eigenvalue )\;, then the eigenvalue
derivatives with respect to some parameter £ (which in our case is the mesh coordinates vector) are
obtained as follows:
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Notice that we left-multiplied the equation 5 by the left (row) eigenvector y; and normalized so
that y; - x; = 1. Amongst the ways to approximate the gradients of the eigenvalues such as doing
the finite difference on eigenvalues or reverse differentiation, we choose to do finite differences on
the Jacobian matrix instead, since the former is expensive owing to the difficulty of eigen-problem
and the latter is simply much harder to do. The derivative of the A matrix with respect to the
mesh entities is approximated using finite differences:
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Hence, using equation 6, we are able to predict changes induced in eigenvalues by the mesh
perturbations. Fig. 1 shows that for a good range of £ parameter, the gradient of the Jacobian
more or less does not change for a specific mesh location. The horizontal axis in Fig. 1 is the size
of the £ parameter in Eq. 7 where the length scale is the smallest edge incident on each vertex.
This analysis validates as well as further substantiates the use of finite differences to calculate the
gradients of the Jacobian matrix.
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Figure 1: Sensitivity map of the gradient of the Jacobian matrix with respect to perturbation
parameters for an inviscid Burgers’ problem

3 How to find the perturbation vector?

All in all, using energy stability results along with the knowledge of eigenvalue derivatives upon any
mesh perturbation, we can tune the perturbations in a way such that the real parts of eigenvalues
(specially the unstable ones) decrease. However, this is not an easy task, as naively perturbing the
mesh to improve one eigenvalue may lead to destabilizing the other (stable) eigenvalues.

Oune intuitive way to perturb the mesh is to consider all (right-most) eigenvalues separately.
Surely, the fastest route to stabilizing a single eigenvalue regardless of the other eigenvalues is to
perturb the mesh in the exactly opposite direction of the gradient of the eigenvalue (steepest descent
method) which means that the following inequality should hold:
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This results in a perturbation vector with the direction and size of:
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A complication arises when there are multiple unstable or nearly unstable eigenvalues due to
there being multiple perturbation vectors which could partly or completely contradict each other.
One way to solve this is to take a weighted average of these multiple perturbation vectors with
weights proportional to how positive (unstable) the corresponding eigenvalues are to gain a single
perturbation vector. Another more sophisticated approach is to reform the problem to stabilize
all the unstable eigenvalues collectively. To do so, we minimize (negate) the real part of the right-
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most eigenvalues directly. The single perturbation vector = A&, should satisfy all the linear
inequalities (Eq. 10) required to stabilize the problem:

m{Aj}+7~aa—2jgo 1<j<M (10)

where M is the number of unstable eigenvalues. With choosing the optimization variables as the
entities of the perturbation vector, the linear optimization problem is defined as:
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where s; are the negative of the slack variables (positivity of each inequality), subject to the linear
constraints s; < 0. The upper bound for the optimization variables are based on the local length
scale to avoid any non-conformality or irregularity in the mesh after the modification. In this case,
each perturbation size at each vertex is kept less that 10% of the length of the longest incident
edge. Since we have a linear optimization problem, the optimum solution to the summation of
the objective functions is equivalent to the solution of the multi-objective minimization of each
eigenvalue. In other words, instead of minimizing the slack variable for each eigenvalue separately,
we can minimize the summation of the slack variables.

4 Which vertices to perturb?

The key to our analysis is to approximate ?9—2‘7'. However we do not need to calculate this for the
whole mesh as only part of the mesh is responéible for instabilities most of the time. We know that
the right eigenvector is a mode of the solution. Therefore if a Jacobian matrix tends to have an
unstable solution, the right eigenvectors of the unstable modes will specify the parts of the mesh
where things have gone wrong. Moreover, there is no need for the exact calculation of the gradient
of the eigenvalues, as any approximate one is able to guide the mesh modification in the right
direction for better stability properties. Hence to approximate g—)&‘j:

1. Span the right eigenvector (e.g., see Fig. 2a)
2. Pick up the largest components of the eigenvector

3. List all CVs corresponding to these components as well as the ones in their Jacobian fill (e.g.,
see Fig. 2b)



4. Perturb vertices located on these CVs
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Figure 2: How to choose vertices for perturbation

5 Mesh improvement

A preliminary test case has been done to showcase the applicability of our approach in stabilizing
an initially unstable problem. In this case, a 3D MUSCL Advection problem has been stabilized
by pushing its single unstable eigenvalue to the left half complex plane (see Fig. 3a). As is obvious
from Fig. 4, by perturbing only four vertices the problem has transfered to a stable region. The
stability can also be observed from the plot of residual over the iterations (as is seen from Fig. 3b)
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Figure 3: Spectral map before and after the mesh perturbation for a 3D 2"¢ order MUSCL advection.
Time stepping is done by backward Euler.

Figure 4: Mesh modification to stabilize the problem for a 3D 2"¢ order MUSCL advection

Note that the Jacobian in the linear advection problem is only a function of mesh coordinates
and constant wave speeds and is completely independent of the solution. This in turn asserts
that perturbing the mesh in a direction predicted by the gradients of the eigenvalues is indeed a
proper approach to gain stability. However, for more complicated nonlinear problems, more care
and thoughts need to be put into consideration as the Jacobian is also a function of the solution.

Another complication arises when there are multiple unstable or near instability eigenvalues;
thereby there are multiple perturbation vectors which could partly or completely contradict each
other. To mitigate this problem we opted to put more emphasis on the rightmost eigenvalues, so as
to disregard an eigenvalue in calculating the perturbation vector, in case it was contradicting the
resultant perturbation vector calculated solely from the rightest-most ones.

The first trial for non-linear problems is done using inviscid Burgers’ problem where the Jacobian
of the semi-discrete system is no longer independent of the solution. To linearize the Jacobian, we
uses a first order solution to approximate the second order Jacobian. By doing so, we will specify
the unstable eigenvalues as well as parts of the mesh responsible for these instabilities. Fig. 5b
shows how modifying the mesh locally has changed the unstable eigenvalues in Fig. 5a to the left
half of the complex plane.
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(b) Mesh modification

Figure 5: Before and after mesh perturbation for an inviscid Burgers’ problem

6 Selective increase of the stencil size

Haider et al. [2, 10] showed that for a linear advection problem increasing the stencil size of the
solution reconstruction (see [11, 12, 13] and the references therein on how to do the reconstruction)
have a positive effect on stabilizing the problem. To do this, they introduced a special norm of part
of the reconstruction matrix called reconstruction map, and showed a relative correlation between
the value of this parameter and the stability of the reconstruction. The main takeaway point was
that adding another layer of control volumes to the solution reconstruction in spacial discretization



will make the problem more stable. Therefore in a parallel attempt to mesh modifications, we will
change the discretization. We have observed that by using the right eigenvector of the unstable
mode, we can cherry-pick a small number of control volumes (instead of the whole mesh) with large
values in the eigenvector to increase their stencil size. Fig. 6 shows how increasing the stencil size
of only 6 control volumes out of the 1382 control volumes for an inviscid burgers problem stabilizes
the four existing unstable eigenvalues. In this way, without any changes in the mesh, we were able
to stabilize the problem by changing the spatial discretization locally.
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Figure 6: Inviscid Burgers in a channel with 1382 CVs

7 Conclusion

In this work, we studied stability and more specifically a new approach to stabilize PDE’s governing
computational fluid dynamics problems. In the proposed approach, which to the best of our knowl-
edge, is the first of its kind perturbs the mesh vertices locally so that the new mesh is more suitable
for the PDE of interest. In our quest to improve stability, we exploit the gradients of eigenvalues
as feedback tools to determine in which direction and how much the mesh vertices should be per-



turbed so that the Jacobian of the semi-discretized set of equations have more amiable eigenvalues.
The less positive these eigenvalues are, the more stable the semi-discrete system of equations are.
Our linear Advection results along with nonlinear inviscid Burgers’ problem showcase a proof of
concept and paves the way for stabilizing more complicated and nonlinear problems. Moreover, in
a parallel work to mesh modifications, we showed that changing the discretization locally, especially
the reconstruction stencil, can stabilize the initially unstable problems.
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