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Abstra
t: The new approa
h proposed here, improves the stability of unstru
tured mesh �nite-

volume CFD 
al
ulations by moving verti
es in the mesh as a posteriori pro
ess. In this pro
ess, we

exploit the gradients of eigenvalues with respe
t to the lo
al 
hanges in the mesh to �nd dire
tions

and magnitudes of mesh perturbations that will make the Ja
obian of a semi-dis
rete system of

equations negative semi-de�nite. This will ensure the energy stability of the system; 
onsequently

resulting in 
onvergen
e. Our numeri
al results have shown that the proposed method was able

to lo
ate the problemati
 parts of the mesh responsible for instabilities as well as to modify the

glit
hes for several physi
al problems. It is 
onje
tured that the failure of our method for some

spe
i�
 problems is probably due to the insensitivity of these problems to lo
al 
hanges in the

mesh. In these 
ases, the e�e
ts of boundary 
onditions and modes of the physi
al features are

dominant.

Keywords: Spe
tral stability analysis, Computational Fluid Dynami
s, Energy stability, Eigen-

analysis.

1 Introdu
tion

As the 
apabilities of 
omputational �uid dynami
s software has grown, so too have the size and


omplexity of the problems to whi
h industrial users apply CFD. Even for expert users � who

understand how to generate meshes and 
hoose �ow solver options to get good solutions for routine

problems in their area of expertise � new large s
ale problems are 
hallenging: trial and error are

required to identify and resolve important �ow features and �nd a stable solution. Histori
ally the

main tool for in
reasing the solution a

ura
y has been either employing grid re�nement or high

order s
hemes. However, for real world appli
ation problems, the baseline simulation often pushes

the limits of available 
omputing resour
es. Su
h studies are often prohibitive due to instability

issues. This problem is parti
ularly 
hallenging sin
e 
ommer
ial CFD software typi
ally handles


omplex problem geometries using unstru
tured meshes, for whi
h a

ura
y and stability issues are

not as well understood as for stru
tured meshes. Thereby, with this rapid development of high
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order numeri
al methods 
omes the need for stability analysis. However, these studies are lagging

behind to fully understand and predi
t unstable features on general unstru
tured meshes; hen
e

to remedy them. The la
k of rigorous analysis tools to �x the instabilities along with the larger

time steps and more 
ompli
ated geometries for engineering purposes 
alls for a thorough stability

analysis.

The stability of numeri
al dis
retization methods depends not only on the methodology but also

on the mesh: bad features in a mesh far from any �ow features of interest 
an still have a deleterious

e�e
t on the stability or 
onvergen
e of a CFD solver. A thorough understanding of this 
onne
tion


an provide guidan
e in the design of numeri
al methods or mesh generation that would improve

solver performan
e and robustness. In this paper, we use eigen-analysis to study and improve

the mathemati
al stability of the semi-dis
rete system of equations arising from unstru
tured mesh

spa
e dis
retization. This analysis will hopefully enable us to predi
t instabilities and help to remedy

them prior to solving the problem. To the best of our knowledge, eigenvalue analysis has always

been used to �nd some upper bound and thresholds of stability su
h as energy stability analysis

whi
h is attra
tive in both Finite element (e.g. [1℄) and �nite volume (e.g. [2, 3℄) 
ommunities; and

it has never been applied to modify mesh or �ow features as a 
ontrolling feedba
k tool to stabilize

an unstable 
ase. With the aid of entropy and the notion that entropy should always in
rease, many

other stability s
hemes have also been developed. These methods (e.g. see [4, 5, 6℄ and the referen
es

therein) utilize entropy variables to devise entropy stable s
hemes for nonlinear partial di�erential

equations. However, all these various works have failed to provide an intera
tive pra
ti
al tool to

automati
ally stabilize a dis
retized linear or nonlinear PDE on a general unstru
tured mesh.

In this paper, we use eigen-analysis to study and improve the mathemati
al stability of the semi-

dis
rete system of equations arising from unstru
tured mesh �nite volume spa
e dis
retization. This

approa
h has its roots in energy analysis (e.g. [3, 7℄). Energy stability for semi-dis
rete systems

requires that all eigenvalues have negative real part. Our goal is to stabilize a (linearized) PDE by

perturbing the mesh verti
es lo
ally. To do this, we must predi
t the stability prior to the mesh

modi�
ation and �nd the size and dire
tion of mesh perturbation that improves stability. The

rest of this paper lays out as follows: in Se
tion 2 we des
ribe how the gradients of the spatial

semi-dis
rete Ja
obian with respe
t to mesh verti
es are 
al
ulated; in Se
tion 3, the dire
t and

optimization approa
hes for �nding the perturbation ve
tor are explained; after spe
ifying whi
h

verti
es to perturb in Se
tion 4, the lo
al mesh modi�
ation is applied to stabilize the unstable

problems in Se
tion 5. Moreover in Se
tion 6, in an alternative way to perturb the mesh we 
an


hange the dis
retization by in
reasing the re
onstru
tion sten
il size of a 
olle
tion of 
ontrol

volumes to stabilize an originally unstable problem.

2 Gradients of the eigenvalues

From the energy stability analysis and the method of lines, we know that a (linear) PDE, dis
retized

in spa
e, produ
es a 
oupled set of ODE's su
h as:

∂u

∂t
= R(u) (1)

du

dt
=

∂R

∂u
u = Au (2)
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is stable if and only if the Ja
obian matrix A = ∂R
∂u

is negative semi-de�nite whereas we assume the

transient growth is negligible and remains zero. To obtain the semi-dis
rete Ja
obian matrix, A,

for non-linear problems we use a lower order solution at the steady state to linearize the Ja
obian

matrix.

In preliminary unpublished work, we realized that eigen-analysis of semi-dis
rete systems for re-

alisti
 �nite volume dis
retization 
an a

urately predi
t the 
onvergen
e rate for an impli
it solver.

This revelation motivated us to use eigen-analysis to show stability and gradients of eigenvalues to

predi
t how spe
tral stability will 
hange upon 
hanges in the mesh. In other words, the key to our

work is the ability to predi
t 
hanges in the eigenvalues with 
hanges in the mesh. The derivatives of

eigenvalues and eigenve
tors of general matri
es dependent on multiple variables have been studied

by many (e.g. see [8, 9℄ and referen
es therein). If the matrix eigenvalue problem of interest is

A(
−→
ξ )xi(

−→
ξ ) = λixi(

−→
ξ ) (3)

where xi is the ith right eigenve
tor asso
iated with the ith eigenvalue λi, then the eigenvalue

derivatives with respe
t to some parameter ξ (whi
h in our 
ase is the mesh 
oordinates ve
tor) are

obtained as follows:

∂

∂ξi
(Axi = λixi) (4)

yi(
∂A

∂ξ
xi +A

∂xi

∂ξ
=

∂λi

∂ξ
xi + λi

∂xi

∂ξ
) (5)

∂λi

∂ξ
= yi

∂A

∂ξ
xi with 
ondition : yi · xi = 1 (6)

Noti
e that we left-multiplied the equation 5 by the left (row) eigenve
tor yi and normalized so

that yi · xi = 1. Amongst the ways to approximate the gradients of the eigenvalues su
h as doing

the �nite di�eren
e on eigenvalues or reverse di�erentiation, we 
hoose to do �nite di�eren
es on

the Ja
obian matrix instead, sin
e the former is expensive owing to the di�
ulty of eigen-problem

and the latter is simply mu
h harder to do. The derivative of the A matrix with respe
t to the

mesh entities is approximated using �nite di�eren
es:

∂A

∂ξ
=

A(
−→
ξ + δ

−→
ξ )−A(

−→
ξ )

∥

∥

∥
δ
−→
ξ
∥

∥

∥

(7)

Hen
e, using equation 6, we are able to predi
t 
hanges indu
ed in eigenvalues by the mesh

perturbations. Fig. 1 shows that for a good range of ξ parameter, the gradient of the Ja
obian

more or less does not 
hange for a spe
i�
 mesh lo
ation. The horizontal axis in Fig. 1 is the size

of the ξ parameter in Eq. 7 where the length s
ale is the smallest edge in
ident on ea
h vertex.

This analysis validates as well as further substantiates the use of �nite di�eren
es to 
al
ulate the

gradients of the Ja
obian matrix.
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Figure 1: Sensitivity map of the gradient of the Ja
obian matrix with respe
t to perturbation

parameters for an invis
id Burgers' problem

3 How to �nd the perturbation ve
tor?

All in all, using energy stability results along with the knowledge of eigenvalue derivatives upon any

mesh perturbation, we 
an tune the perturbations in a way su
h that the real parts of eigenvalues

(spe
ially the unstable ones) de
rease. However, this is not an easy task, as naively perturbing the

mesh to improve one eigenvalue may lead to destabilizing the other (stable) eigenvalues.

One intuitive way to perturb the mesh is to 
onsider all (right-most) eigenvalues separately.

Surely, the fastest route to stabilizing a single eigenvalue regardless of the other eigenvalues is to

perturb the mesh in the exa
tly opposite dire
tion of the gradient of the eigenvalue (steepest des
ent

method) whi
h means that the following inequality should hold:

ℜ{λorig}+△
−→
ξ ·

∂λ

∂ξ
≤ 0 (8)

This results in a perturbation ve
tor with the dire
tion and size of:
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△ξ = −|k|ℜ

{

∂λ

∂ξ

}

With k >
ℜ{λ (ξorg)}

(

∂λ
∂ξ

)2
(9)

A 
ompli
ation arises when there are multiple unstable or nearly unstable eigenvalues due to

there being multiple perturbation ve
tors whi
h 
ould partly or 
ompletely 
ontradi
t ea
h other.

One way to solve this is to take a weighted average of these multiple perturbation ve
tors with

weights proportional to how positive (unstable) the 
orresponding eigenvalues are to gain a single

perturbation ve
tor. Another more sophisti
ated approa
h is to reform the problem to stabilize

all the unstable eigenvalues 
olle
tively. To do so, we minimize (negate) the real part of the right-

most eigenvalues dire
tly. The single perturbation ve
tor

−→
d = △ξ, should satisfy all the linear

inequalities (Eq. 10) required to stabilize the problem:

ℜ{λj}+
−→
d ·

∂λj

∂ξ
≤ 0 1 ≤ j ≤ M (10)

where M is the number of unstable eigenvalues. With 
hoosing the optimization variables as the

entities of the perturbation ve
tor, the linear optimization problem is de�ned as:

min







M
∑

j

sj







where sj =

(

ℜ{λj}+
−→
d ·

∂λj

∂ξ

)

(11)

where sj are the negative of the sla
k variables (positivity of ea
h inequality), subje
t to the linear


onstraints sj ≤ 0. The upper bound for the optimization variables are based on the lo
al length

s
ale to avoid any non-
onformality or irregularity in the mesh after the modi�
ation. In this 
ase,

ea
h perturbation size at ea
h vertex is kept less that 10% of the length of the longest in
ident

edge. Sin
e we have a linear optimization problem, the optimum solution to the summation of

the obje
tive fun
tions is equivalent to the solution of the multi-obje
tive minimization of ea
h

eigenvalue. In other words, instead of minimizing the sla
k variable for ea
h eigenvalue separately,

we 
an minimize the summation of the sla
k variables.

4 Whi
h verti
es to perturb?

The key to our analysis is to approximate

∂λj

∂ξi
. However we do not need to 
al
ulate this for the

whole mesh as only part of the mesh is responsible for instabilities most of the time. We know that

the right eigenve
tor is a mode of the solution. Therefore if a Ja
obian matrix tends to have an

unstable solution, the right eigenve
tors of the unstable modes will spe
ify the parts of the mesh

where things have gone wrong. Moreover, there is no need for the exa
t 
al
ulation of the gradient

of the eigenvalues, as any approximate one is able to guide the mesh modi�
ation in the right

dire
tion for better stability properties. Hen
e to approximate

∂λj

∂ξi
:

1. Span the right eigenve
tor (e.g., see Fig. 2a)

2. Pi
k up the largest 
omponents of the eigenve
tor

3. List all CVs 
orresponding to these 
omponents as well as the ones in their Ja
obian �ll (e.g.,

see Fig. 2b)
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4. Perturb verti
es lo
ated on these CVs
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(a) Span of the right eigenve
tors for an invis
id

burgers problem

(b) Verti
es on the 
ontrol volumes of the Ja
obian

�ll of the 
ontrol volume with the largest eigenve
tor


omponent

Figure 2: How to 
hoose verti
es for perturbation

5 Mesh improvement

A preliminary test 
ase has been done to show
ase the appli
ability of our approa
h in stabilizing

an initially unstable problem. In this 
ase, a 3D MUSCL Adve
tion problem has been stabilized

by pushing its single unstable eigenvalue to the left half 
omplex plane (see Fig. 3a). As is obvious

from Fig. 4, by perturbing only four verti
es the problem has transfered to a stable region. The

stability 
an also be observed from the plot of residual over the iterations (as is seen from Fig. 3b)
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Figure 3: Spe
tral map before and after the mesh perturbation for a 3D 2nd order MUSCL adve
tion.

Time stepping is done by ba
kward Euler.

Figure 4: Mesh modi�
ation to stabilize the problem for a 3D 2nd order MUSCL adve
tion

Note that the Ja
obian in the linear adve
tion problem is only a fun
tion of mesh 
oordinates

and 
onstant wave speeds and is 
ompletely independent of the solution. This in turn asserts

that perturbing the mesh in a dire
tion predi
ted by the gradients of the eigenvalues is indeed a

proper approa
h to gain stability. However, for more 
ompli
ated nonlinear problems, more 
are

and thoughts need to be put into 
onsideration as the Ja
obian is also a fun
tion of the solution.

Another 
ompli
ation arises when there are multiple unstable or near instability eigenvalues;

thereby there are multiple perturbation ve
tors whi
h 
ould partly or 
ompletely 
ontradi
t ea
h

other. To mitigate this problem we opted to put more emphasis on the rightmost eigenvalues, so as

to disregard an eigenvalue in 
al
ulating the perturbation ve
tor, in 
ase it was 
ontradi
ting the

resultant perturbation ve
tor 
al
ulated solely from the rightest-most ones.

The �rst trial for non-linear problems is done using invis
id Burgers' problem where the Ja
obian

of the semi-dis
rete system is no longer independent of the solution. To linearize the Ja
obian, we

uses a �rst order solution to approximate the se
ond order Ja
obian. By doing so, we will spe
ify

the unstable eigenvalues as well as parts of the mesh responsible for these instabilities. Fig. 5b

shows how modifying the mesh lo
ally has 
hanged the unstable eigenvalues in Fig. 5a to the left

half of the 
omplex plane.
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Figure 5: Before and after mesh perturbation for an invis
id Burgers' problem

6 Sele
tive in
rease of the sten
il size

Haider et al. [2, 10℄ showed that for a linear adve
tion problem in
reasing the sten
il size of the

solution re
onstru
tion (see [11, 12, 13℄ and the referen
es therein on how to do the re
onstru
tion)

have a positive e�e
t on stabilizing the problem. To do this, they introdu
ed a spe
ial norm of part

of the re
onstru
tion matrix 
alled re
onstru
tion map, and showed a relative 
orrelation between

the value of this parameter and the stability of the re
onstru
tion. The main takeaway point was

that adding another layer of 
ontrol volumes to the solution re
onstru
tion in spa
ial dis
retization
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will make the problem more stable. Therefore in a parallel attempt to mesh modi�
ations, we will


hange the dis
retization. We have observed that by using the right eigenve
tor of the unstable

mode, we 
an 
herry-pi
k a small number of 
ontrol volumes (instead of the whole mesh) with large

values in the eigenve
tor to in
rease their sten
il size. Fig. 6 shows how in
reasing the sten
il size

of only 6 
ontrol volumes out of the 1382 
ontrol volumes for an invis
id burgers problem stabilizes

the four existing unstable eigenvalues. In this way, without any 
hanges in the mesh, we were able

to stabilize the problem by 
hanging the spatial dis
retization lo
ally.
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Figure 6: Invis
id Burgers in a 
hannel with 1382 CVs

7 Con
lusion

In this work, we studied stability and more spe
i�
ally a new approa
h to stabilize PDE's governing


omputational �uid dynami
s problems. In the proposed approa
h, whi
h to the best of our knowl-

edge, is the �rst of its kind perturbs the mesh verti
es lo
ally so that the new mesh is more suitable

for the PDE of interest. In our quest to improve stability, we exploit the gradients of eigenvalues

as feedba
k tools to determine in whi
h dire
tion and how mu
h the mesh verti
es should be per-
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turbed so that the Ja
obian of the semi-dis
retized set of equations have more amiable eigenvalues.

The less positive these eigenvalues are, the more stable the semi-dis
rete system of equations are.

Our linear Adve
tion results along with nonlinear invis
id Burgers' problem show
ase a proof of


on
ept and paves the way for stabilizing more 
ompli
ated and nonlinear problems. Moreover, in

a parallel work to mesh modi�
ations, we showed that 
hanging the dis
retization lo
ally, espe
ially

the re
onstru
tion sten
il, 
an stabilize the initially unstable problems.
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