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Abstract: An alternative approach to the classical velocity perturbations is applied to generate
in�ow turbulence for LES and DNS of wall bounded �ows. The method consists in introducing
random temperature perturbations that generate turbulence through local buoyancy e�ects. The
cell perturbation method is implemented in the incompressible buoyant solver of OpenFOAM
v2.3 and tested on a plane channel �ow at Reτ = 395. The buoyancy force is locally increased
within an active zone located at the entrance of the domain. The recovery length is minimized by
optimizing the active zone speci�cations and the governing Richardson number. Reynolds stresses
are compared to reference results. The method appears to be simple and e�cient, while only
�rst-order statistics are required as input.
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1 Introduction

The proper speci�cation of turbulent in�ow conditions for both Large Eddy Simulation (LES) and Direct
Numerical Simulation (DNS) remains a considerable challenge. For developing �ows, the most straightfor-
ward approach is to impose a laminar pro�le with small perturbations and to compute the transition to
turbulence. However, simulating the transition process itself is very costly, and coupling this with a complex
simulation of the downstream �ow would be extremely expensive. The most common approach is to impose
already a turbulent �ow at the inlet. This too is a very di�cult task since turbulent �ows are coherent in
both space and time. Thus, imposing in�ow conditions that are physically correct and that satisfy the gov-
erning equations remains a considerable challenge. As a result, the �ow needs to adjust until an equilibrium
is reached. The key requirement for a turbulent in�ow technique is to be as e�cient as possible in order to
minimize this recovery length and thus reduce the computational cost.

The existing techniques to generate in�ow turbulence can be grouped into two main categories: precur-
sor simulation methods and synthetic methods. Among the precursor simulation methods, two variants exist
where the �rst consists in running an auxiliary calculation on a separate domain with periodic inlet-outlet
boundary conditions, used for instance in [1] and [2]. The velocity in a section is stored at each time step; it
is then fed at the inlet of the main domain that simulates the �ow of interest. An important limitation, in
addition to the need for an extensive database so that di�erent �ow regimes can be simulated, is that this
approach is restricted to fully developed �ows that rarely occur in reality. Moreover, the auxiliary simulation
introduces "spurious" periodicity into the in�ow as observed by Spille-Koho� and Kaltenbach [3].
Cyclic or recycling methods are the second variant; these eliminate the necessity of generating a pre-computed
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library by placing a cyclic plane in the in�ow region of the actual computational domain. In the case of
developing boundary layers, Lund et al. [4] proposed a procedure to rescale the velocity pro�le according
to similarity laws before re-introducing it at the inlet. The computational e�ort of this second approach is
reduced but, as precursor methods, the solution is a�ected by contamination due to periodicity. Attempts to
remove these e�ects have been made by superimposing random perturbations, but results remain dependent
on the characteristics of these random �uctuations.

Synthetic turbulence methods generate a pseudo-random coherent �eld of �uctuating velocities that tries
to reproduce certain aspects of a turbulent �ow. This requires the velocity �eld to be correlated both in
time and space, with given �rst and second order moments, an assigned spectra, and the appropriate phase
information between modes. While the moments and the spectra can be closely matched thanks to stochastic
methods, the phase information strongly depends on the type of �ow and location in the �ow. It is therefore
more di�cult to specify but nevertheless crucial since the structure and shape of the turbulent eddies depend
on it.
Di�erent techniques exist to generate these random perturbations, such as proper orthogonal decomposi-
tion analysis (POD), Fourier decomposition, digital �lter methods or Synthetic Eddy Method (SEM). POD
techniques take as input instantaneous realizations of the �ow acquired experimentally and extract basis
functions that are optimal to represent the data and reconstruct turbulence. Perret et al. [5] used this
method based on stereoscopic PIV measurements to provide inlet conditions for the LES of a mixing layer.
The Fourier or spectral methods use a decomposition of the signal into Fourier modes. Based on the work of
Kraichnan [6], Smirnov et al. [7] proposed the random �ow generation (RFG) technique that is implemented
in Fluent as the Spectral Synthesizer [8]. It is able to generate an inhomogeneous and anisotropic turbulent
�ow, provided that an anisotropic velocity correlation tensor is speci�ed. Modi�cations of the RFG method
have been proposed by Keating et al. [9], adding a forcing term to amplify/damp velocity �uctuations in the
wall-normal direction. Although the establishment length of the Reynolds stresses could be reduced by two
along the channel down to about 10 half channel heights (δ), the turbulent kinetic energy needed a longer
distance to reach its fully-developed value.
Another option is to use digital �ltering. Xie and Castro [10] developed a digital �lter that uses exponen-
tial functions in time and space for spatially developing boundary layers. LES of a plane channel provided
satisfactory validation of the technique. In order to reduce the arti�cial pressure �uctuations introduced by
the original turbulent in�ow, Kim et al. [11] developed a divergence free version. This modi�cation resulted
in signi�cantly reduced pressure �uctuations, however the recovery length for the skin friction coe�cient for
the channel simulation was increased to 16 δ instead of 10 with the original method of Xie and Castro [10].
Jarrin [12] proposed a synthetic eddy method (SEM) which creates velocity �uctuations by superposing ed-
dies with random position and intensity. The author concluded that 15 δ were needed for the �ow to recover
equilibrium along a plane channel. Poletto et al. [13] derived a divergence free SEM (DFSEM) by modifying
the shape function in the velocity computation. As a result, pressure �uctuations were almost eliminated
while the recovery length along the channel was reduced by 33 % compared to the original method of Jarrin
[12]. This latest reference also proposes a comprehensive review of several other methods to generate in�ow
turbulence, such as mixed methods that combine Fourier decomposition and digital �ltering, forcing tech-
niques or immersed boundary methods.

The important characteristics to consider while assessing turbulent in�ow methods are the following:

1. What are the inlet parameters required by the method ?

2. Is the method divergence free, thus avoiding arti�cial pressure �uctuations ?

3. What is the skin friction recovery length needed to reach equilibrium ?

These questions are addressed in Table 1 for the main numerical methods and authors cited previously. The
di�erent inlet parameters are denoted as < u > for the mean velocity, < uiuj > for the Reynolds stresses,
Iij for the length and time scales, < k > for the turbulent kinetic energy and Neddies for the number of eddies.

To conclude, although the recovery length may be reduced to about 10 δ while satisfying divergence-free
conditions, all of these turbulent in�ow methods require a priori detailed information about the �ow (i.e.,
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Method Author Input parameters Divergence free Recovery length

Digital Filter
Xie & Castro [10]

< u >, < uiuj >, Iij
no 10 δ

Kim et al. [11] yes 16 δ

Synthetic Eddy
Jarrin [12]

< u >, < uiuj >, Iij , < k >, Neddies
no 15 δ

Poletto et al. [13] yes 10 δ
Fourier Smirnov [7]

< u >, < uiuj >
yes 20 δ

(+forcing) Keating et al. [9] yes 10 δ

Table 1: Overview of turbulent in�ow methods

length scales, anisotropy or turbulence levels), that is unknown in a majority of cases. The purpose of the
temperature perturbation method introduced in Section 2 is to propose a simple approach that only requires
�rst order statistics, thus making it easily applicable to a variety of �ows. Results of simulations on a plane
channel �ow are presented in Section 3 including a comparison with reference fully-developed turbulence
obtained from a periodic inlet-outlet channel. Section 4 is dedicated to summary and concluding remarks.

2 Numerical methodology

2.1 The temperature perturbation method

The shortcomings of the existing turbulent in�ow methods highlighted in Section 1 have motivated the devel-
opment of alternative approaches that would be less complex and more �exible. In the frame of atmospheric
boundary simulations, Mirocha et al. [14] introduced a new method based on the inclusion of random tem-
perature perturbations. This technique relies on the principle that the seeded perturbations help to speed
up turbulence generation by inducing local buoyancy e�ects. These vertical accelerations induce the creation
of three-dimensional motions that eventually form turbulent structures. This method presents major advan-
tages over the classical velocity perturbations. Instead of trying to impose realistic turbulence as boundary
condition, turbulence is triggered through buoyancy, hence making the process naturally divergence-free.
Moreover, it requires very limited information regarding the inlet �ow speci�cations.
The temperature perturbations of Mirocha et al. [14] were sinusoidal in space and varied in size as a function
of the model grid spacing. To limit their correlated aspect, the sign of the perturbations were reversed at
speci�ed frequencies. This approach was tested on a developing atmospheric boundary layer over a �at
terrain. While encouraging results were obtained, exhibiting an accelerated development of turbulence com-
pared to natural transition, further testing of the concept was required.

Thorough testing of the technique was carried out by Muñoz-Esparza [15] summarized in [16]. Four new
approaches based on the temperature perturbation concept were proposed: spectral inertial subrange per-
turbations, spectral low wavelengths perturbations, point perturbations and cell perturbations. These were
tested on a convective developing boundary layer and applied to the 24 �rst rows of cells located along the
inlet boundary. The �rst two approaches perturbate the spectral distribution of temperature, while the last
two impose spatial distributions; the spectral inertial subrange approach consists in perturbating essentially
three modes that are located in the inertial subrange, in order to develop faster the energy-containing eddies.
Similarly to a synthetic method, the spectral low wavelengths approach perturbates randomly the spectra
obtained from a periodic simulation. The point and cell perturbation approaches consist in randomly per-
turbating the temperature in each cell or groups of cells respectively.
These four propositions were assessed by comparing their spectral behavior compared to a reference fully-
developed periodic simulation. Results highlighted a spiky velocity spectrum in the case of the point per-
turbation method, suggesting that changing the random perturbations from one grid cell to another tends
to excite the harmonics of the fundamental wavelength. The spectral inertial subrange method provided
an enhanced energy content for the wavenumbers contained within the interval delimited by the three per-
turbated modes. These �rst two methods were clearly outperformed by the spectral low wavelengths and
cell perturbation methods. Although larger levels appeared at intermediate wavelengths, their spectra were
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found to be already close to the periodic inlet/outlet simulation after only 15x/zi0, zi0 being the temperature
inversion height that limits the boundary layer height. Very similar energy distributions were obtained at
30x/zi0. The cell perturbation was preferred over the spectral low wavelengths as it requires less parallel
communications, thus limiting the computational cost. It is therefore chosen in this study to investigate the
generation of turbulent in�ow conditions for LES simulations.

2.2 Application to wall bounded �ows

2.2.1 Governing equations

Up to now, the temperature perturbation method has been applied to atmospheric boundary layer �ows using
the Weather Research and Forecasting (WRF) LES model [17]. The objective of this study is to apply the
concept to incompressible wall bounded �ows. The solver of OpenFOAM buoyantBoussinesqFoam is chosen
to accommodate this technique as it models the buoyancy e�ects that will provoke the formation of turbulent
structures by converting the seeded temperature gradients into velocity perturbations. The equations used
by the solver are described hereafter. The constant-density �ltered (LES) continuity equation is:

∂uj
∂xj

= 0 (1)

The constant-density (except in the gravity term) �ltered momentum equation is:

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂

∂xi

(
p

ρ0

)
+

∂

∂xj
(τ ij + σsgsij ) +

ρ

ρ0
gi (2)

where gi is the gravity vector, σsgsij is the subgrid-scale stress tensor and τ ij is the shear stress tensor due to
molecular viscosity:

τ ij = ν0

(
∂ui
∂xj

+
∂uj
∂xi

)
(3)

where ν0 is the molecular kinematic viscosity. Note that, in OpenFOAM, the pressure is always normalized by
the density for the incompressible solvers, such that P , p

ρ0
is the kinematic pressure in [m2/s2]. Rearranging

the gravity term, Eq. (2) can be rewritten as follows:

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂P

∂xi
+

∂

∂xj

[
ν0

(
∂ui
∂xj

+
∂uj
∂xi

)
+ σsgsij

]
+ gi

(
1 +

(ρ− ρ0)

ρ0

)
(4)

The LES sub-grid scale stress tensor, σsgsij , can be divided into a deviatoric part and an isotropic part, where

k
sgs

= − 1
2σ

sgs
kk is the LES sub-grid scale kinetic energy:

σsgsij = τsgsij −
2

3
k
sgs
δij (5)

The isotropic part can be placed in the �rst term on the right-hand side of Eq. (4), yielding a modi�ed
kinematic pressure P̃ . The last term in parenthesis on the right-hand side of Eq. (4) can be expressed as
follows:

1 +
(ρ− ρ0)

ρ0
= 1− β

(
T − T0

)
(6)

where β is the thermal expansion coe�cient in [K−1], T is the temperature in [K] and T0 is a reference
temperature in [K]. As also usual in incompressible �ows, the term gi · 1 can also be absorbed into the
modi�ed kinematic pressure: hence P̃ = P + gy + 2

3 k
sgs

. The deviatoric part of the subgrid-scale stress
tensor is modeled as:

τsgsij = νsgs

(
∂ui
∂xj

+
∂uj
∂xi

)
(7)
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where νsgs is the e�ective sub-grid scale kinematic viscosity. Substituting these di�erent terms into Eq. (4)
yields:

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂P̃

∂xi
+

∂

∂xj

[
νeff

(
∂ui
∂xj

+
∂uj
∂xi

)]
− β

(
T − T0

)
gi (8)

where νeff = ν0 + νsgs is the e�ective kinematic viscosity.

The �ltered temperature equation can be written as:

∂T

∂t
+

∂

∂xj
(Tuj) =

∂

∂xj

[
k0
ρ0Cp

∂T

∂xj

]
+

∂

∂xj

(
ksgs
ρ0Cp

∂T

∂xj

)
(9)

The right-hand side can be rearranged by recalling that Pr = Cpµ0/k0 and by de�ning that Prsgs =
Cpµsgs/ksgs, such that Eq. (9) becomes:

∂T

∂t
+

∂

∂xj
(Tuj) =

∂

∂xj

[(
ν0
Pr

+
νsgs
Prsgs

)
∂T

∂xj

]
(10)

The turbulent and molecular contributions to the heat transfer di�usivity are combined as:

αeff =
νsgs
Prsgs

+
ν0
Pr

(11)

with α denoting the thermal di�usivity. As is usual in LES, one assumes that Prsgs is constant.

2.2.2 Similarity parameters

The non-dimensional form of these governing equations can be obtained by scaling the variables as follows:

u∗i = ui/U0; x∗i = xi/L0; t∗ = tU0/L0; P̃ ∗ = P̃ /U2
0 ; (∆T )∗ = (T − T0)/(∆T )0; g∗i = gi/g0 (12)

with U0, L0, (∆T )0 and g0 that are reference quantities de�ning the problem.

This results in the dimensionless form of Eq. (8) for the momentum equation:

∂u∗i
∂t∗

+
∂

∂x∗j
(u∗i u

∗
j ) = −∂P̃

∗

∂x∗i
+

1

Re

∂

∂x∗j

[(
1 +

νsgs
ν0

)(
∂u∗i
∂x∗j

+
∂u∗j
∂x∗i

)]
−Ri

(
∆T
)∗
g∗i (13)

where the Reynolds number, Re, gives the ratio between advective and viscous forces:

Re =
U0L0

ν0
(14)

and the Richardson number, Ri, gives the ratio between inertial and convective forces:

Ri =
g0β(∆T )0L0

U2
0

(15)

Similarly for the temperature equation, one obtains its dimensionless form as:

∂T
∗

∂t∗
+

∂

∂x∗j

(
T
∗
u∗j

)
=

1

Pe

∂

∂x∗j

[(
1 +

αsgs
α0

)
∂T
∗

∂x∗j

]
(16)

where the Peclet number, Pe, is de�ned as:

Pe = Re Pr =
U0L0

α0
(17)

with the Prandtl number, Pr, giving the ratio between the momentum di�usivity and the thermal di�usivity,
previously de�ned.
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Referring to the momentum equation Eq. (13), one understands how the inclusion of temperature gradients
can generate a buoyancy force that will induce the development of turbulent structures. The importance
of these buoyancy e�ects are governed by the Richardson number, identi�ed as a key parameter of the cell
perturbation method.

2.3 Computational settings

The cell perturbation method proposed by Muñoz-Esparza [16] imposes random temperature perturbations
along square bidimensional groups of cells. Through buoyancy e�ects, these have shown to induce the
formation of three-dimensional turbulent structures. This research was extended (ref. [18]) with the objective
of identifying and optimizing the governing parameters in order to reduce the recovery length.

2.3.1 Optimum perturbation range

In the case of compressible atmospheric �ows, the contribution of the buoyancy force with respect to the
mechanical forcing can be expressed by introducing a perturbation Eckert number:

Ec =
U2
0

ρ0Cp (∆T )max
(18)

However, in the type of application treated here, the dimensional analysis of Section 2.2.2 does not make
Ec intervene in the process since the dissipation function is considered as negligible for incompressible �ows.
Instead it is Ri that expresses the relative importance of the buoyancy e�ects. However, the work of Muñoz-
Esparza [18] serves as reference to de�ne the maximum perturbation amplitude, (∆T )max, and deduce a
recommended Richardson number. Di�erent Eckert numbers were simulated by varying the perturbation
range. An intermediate value of Ec = 0.16 insures an ideal balance between buoyancy and mechanical forcing,
thus avoiding notable velocity distortion near the in�ow which would result in a di�erent quasi-equilibrium
state. From this reference, an optimum Richardson number of Ri = 0.3 is obtained, representative of a
mixed convection regime and taken as initial value in this study.

2.3.2 Optimum perturbation time scale

The perturbation time scale de�nes the frequency at which the perturbation values are changed. Thus, a
dimensionless perturbation time scale (Γ) is proposed by Muñoz-Esparza [18], based on the perturbation
time tp:

Γ =
tpU1

dc
(19)

This parameter represents the time taken by the �ow to be advected across a perturbation cell in the most
adverse �ow conditions. This is considering that the �ow direction is along the diagonal of the perturbation
cell, dc =

√
2nc∆x, with nc the number of grid cells per perturbation cell side and ∆x the cell size in the

streamwise direction, for a velocity U1 taken at the �rst vertical grid point.
The in�uence of this parameter on the results was investigated in [18], revealing that the performance of
the method can be optimized by leaving su�cient time for the �ow to assimilate the perturbations before
imposing the next perturbations, such that Γ = 1. Indeed, for insu�cient times (Γ < 1) the triggered
instabilities were ampli�ed, resulting in too much energy in the production range and longer distances to
redistribute this energy content. If, on the contrary, Γ >> 1, the �ow showed signs of loosing memory from
one perturbation to the next, inducing alternating laminar and turbulent patches. Consequently, a value of
Γ = 1 will be taken to calculate the perturbation frequency.

2.3.3 Spatial distribution of the perturbations

The temperature perturbations are distributed over a bu�er region that starts from the in�ow boundary.
A uniform value is randomly attributed to tridimensional perturbation cells of 8∆x × 8∆z × 8∆z in the
streamwise (x), wall-normal (y) and spanwise (z) directions respectively. The bu�er region extends three
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perturbation cells parallel to the in�ow boundary, thus covering 24 grid cells in the streamwise direction.
The perturbation cell size is chosen based on the study of Muñoz-Esparza [18] that recommends choosing
a minimum size of 8∆x to avoid the energy from rapidly dissipating when applied to higher wavelengths.
Higher sizes were also tested to study the impact of the perturbation cell size on the performance of the
method. Although energy is placed into di�erent scales, similar turbulent structures were observed in the
�ow, resulting in comparable transition lengths. Therefore, the perturbation cell size is not considered as
critical and will be kept constant throughout this study.

A major di�erence compared to the previous application concerns the length scales involved. In atmo-
spheric �ows, even at a microscale level these may range from an order of magnitude of 10−1 to 102 m,
such that buoyancy e�ects are naturally present in these types of �ows, with a typical Richardson number
of Ri = 0.3. Wall bounded �ows though involve smaller length scales (< 10−1 m) and typically for air and
limited gradients (∆T < 1 K), a plane channel �ow simulation at Reτ = 395 is characterized by Ri << 1 and
hence negligible buoyancy e�ects. Let us recall how the buoyancy force of Eq. (8) is de�ned in the current
framework:

−β
(
T − T0

)
gi (20)

Since the purpose of the temperature method is to generate in�ow turbulence without a�ecting the down-
stream �ow in a signi�cant way, some modi�cations of the temperature perturbation method are needed
to ful�ll both of these criteria. In particular, the buoyancy force needs to play an active role only close to
the in�ow region. To ful�ll this requirement, the solution is to manipulate the thermal expansion ratio (β
�eld) by arti�cially increasing its value within an active perturbation region at the in�ow. This will enable
the seeded perturbations to induce vertical accelerations that are su�cient to trigger the onset of three-
dimensional motions and eventually accelerate the formation of turbulent structures. By setting β back to a
realistic value outside of the active perturbation region, these e�ects will be rendered inactive downstream.

3 Validation on a plane channel �ow

3.1 Numerical description

A plane channel �ow is simulated with a domain size of 30 δ × 2 δ × 3.5 δ, with δ the half channel height.
The Reynolds number is set to Reτ = 395 based on δ and the friction velocity uτ . A mesh of 1.68 Million
cells is generated, with a number of grid points of 300× 80× 70. The mesh is uniform in the streamwise and
spanwise directions with resolutions of ∆x+ = 39.5 and ∆z+ = 19.8 respectively. A vertical stretching is
applied in the wall-normal direction with an expansion ratio of 1.1 resulting in a �rst cell center at y+ = 0.9.
The Smagorinsky sub-grid scale model is applied with a constant coe�cient Cs = 0.065 [19] and a van Driest
wall damping [20]. A second order implicit scheme is used for time discretization and the time step is adjusted
to insure that the CFL number reamins less than unity. A second order central discretization scheme is used
for space discretization. The �ow is solved by the buoyant incompressible solver buoyantBoussinesqFoam of
OpenFOAM v2.3. The Poisson equation is solved so as to satisfy the continuity equation. It applies the PISO
algorithm for pressure-velocity coupling, with two pressure corrector steps in this case. The solver is modi�ed
to include the temperature perturbation method, such that pseudo-random temperature perturbations are
seeded every perturbation time step ∆tp, applying constant values to the prede�ned perturbation cells.
No-slip wall boundary conditions are applied to the top and bottom walls while periodic boundary conditions
are applied in the spanwise direction. The mean velocity pro�le extracted from the periodic inlet/outlet
channel simulation described in Section 3.2 is applied at the inlet. A zero velocity gradient is imposed at
the outlet.
An aspect of the temperature perturbation method is to verify that, when introducing the perturbations,
no net heat is added into the solution. This is checked by integrating the random values imposed over the
perturbation cells.
Summarizing the guidelines formulated in Section 2.3 and followed in this study, the maximum amplitude
of the temperature perturbations are set for Ec = 0.16 and the perturbation time is given by Γ = 1. The
thermal expansion ratio (β) within the active perturbation region is modi�ed from the �uid's value, βfluid,
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to a so called active value, βactive, in order to retrieve Ri = 0.3. The in�uence of this zone is investigated in
Section 3.3.

3.2 Reference periodic inlet/outlet channel

A LES simulation of a periodic inlet/outlet channel �ow, referred to as case PBC, is �rst run for the selected
Reτ = 395. The purpose of this preliminary simulation is to obtain a fully developed turbulent solution that
provides a straightforward validation while testing the temperature perturbation method.
The mean velocity pro�le is the only input required by the temperature perturbation method; it is extracted
from the periodic inlet/outlet simulation and imposed at the inlet. The corresponding Reynolds stresses will
serve as reference while assessing the second moment statistics obtained with the in�ow method at di�erent
streamwise locations along the channel.

The only modi�cation compared to the numerical approach described previously consists in applying peri-
odic boundary conditions between the inlet and the outlet. The �ow is driven by a pressure gradient that is
added to the streamwise momentum equation and adjusted to u2τ/δ in order to match the targeted Reτ .
The mean velocity and Reynolds stress pro�les obtained from case PBC are compared with reference DNS
data [21] in Fig. 1. All pro�les denoted by the superscript + are non-dimensionalized appropriately by the
friction velocity uτ and the kinematic viscosity ν.

100 101 102
0

5

10

15

20

DNS

LES

u'u'

-u'v'-v'v'

-w'w'

a) b) <u'iu'j>+,d<u+>

Figure 1: Pro�les obtained from case PBC a) mean velocity b) Reynolds stresses. Here, deviatoric part for
the diagonal elements: i.e. < u′u′ >d=< u′u′ > − 1

3 (< u′u′ > + < v′v′ > + < w′w′ >). LES results (lines)
and DNS data [21] (symbols)

As commonly observed in LES simulations with similar grid resolution [11], the mean velocity is over-
predicted in the center of the channel, while < u′u′ >+ is over-predicted near the wall. On the contrary
< v′v′ >+ is under-predicted in the near wall region [22]. However, the quality of the LES results remains
satisfactory and despite these di�erences, the primary aim is to test the temperature perturbation method
at a reasonable cost. Most importantly, case PBC remains the reference of the turbulent in�ow channel.

3.3 Optimization of the turbulence development

3.3.1 Speci�cations of the perturbation zone

The focus of this section is to try and optimize the way the active perturbation zone introduced in Sec-
tion 2.3.3 is de�ned. As a reminder, this region is characterized by an arti�cially high thermal expansion
coe�cient β, in order to generate a buoyancy force that is su�cient to perturbate the �ow. To avoid having
high temperature gradients that would still remain within the region of interest, the choice of keeping these
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negligible was favored ((∆T )max < 1 K) by increasing considerably the β �eld inside the active perturbation
region.
The objective is to minimize the distance needed for the �ow to adjust from the turbulent in�ow section
back to the equilibrium solution provided by the case PBC. This so-called recovery length is assessed based
on the dimensionless wall shear stress, de�ned as τ+w = τw/(ρu

2
τ ). In this case, a very strict error criteria of

0.5% is used to de�ne the development length needed to retrieve the reference value of 1.

The �rst study concerns the inclusion of a bu�er region at the transition between the fully active region,
where βactive is applied from the inlet, to the rest of domain that is characterized by βfluid. These are
represented on the sketch of Fig. 2 hereafter:

Figure 2: a) Contours of thermal expansion coe�cient within the di�erent regions b) Contours of temperature
variation at a perturbation time step

Initially, the fully active region is 7δ while the transition region extends until 10δ. Di�erent smoothing func-
tions are tested and the resulting development lengths are shown in Fig. 3. Among these, a linear damping
(linSmooth), an exponential damping (expSmooth) and a double exponential damping (dbExpSmooth) are
compared to the case without any smoothing (noSmooth).
The use of a bu�er region appears to be bene�cial since, without it, a strong peak appears at 7 δ where the
sudden transition is located. Smoother functions at the top end or even at both ends do not prevent the
bu�er region from being felt by the wall shear stress. It is eventually the simplest smoothing corresponding
to a linear function that is the most e�cient, limiting the recovery length to 23.8 δ.

Secondly, the length of the fully active region, Lactive, is varied in an e�ort to further reduce the development
distance. The initial value of 7 δ is compared to various lengths ranging from 3 to 10 δ, keeping a linear
transition of 3 δ. The e�ect on the development of the wall shear stress is reported in Fig. 4 along with the
associated recovery lengths top right. The results indicate that shortening the fully active zone increases
the �ow development. On the contrary, leaving more time for the �ow to adjust enables to improve the
development length by about 10%. Thanks to an active length of 10 δ, the recovery length can be reduced
down to 21.3 δ.

Based on a reference total perturbation length of 13 δ, the parametric study is �nalized by looking into the
in�uence of the bu�er region length, Lbuffer. Two additional con�gurations of (Lactive+Lbuffer) are tested,
using values of (5 δ+ 8 δ) and (7 δ+ 6 δ). These are compared to the initial set-up of (10 δ+ 3 δ) in Fig. 5. A
longer bu�er length enables to shorten the recovery length, once again pointing out the necessity of having a
smooth transition between the regions of the channel where the buoyancy e�ects are active and inactive. An
optimum set-up is found for a fully active length of 5 δ and a bu�er length of 8 δ, for which the development
length is equal to 19.4 δ.
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Figure 3: a) E�ect of the transition region on the dimensionless wall shear stress b) Smoothing functions

Figure 4: E�ect of the fully active length on the dimensionless wall shear stress

3.3.2 Strength of the buoyancy e�ects

Identi�ed in Section 2.2.2 as the key parameter governing the strength of the buoyancy e�ects, i.e. the
in�uence of the Richardson number, is investigated in Fig. 6. Various values are tested around the initial
value of 0.3 recommended by Muñoz-Esparza [18], keeping Ri within the range [0.05− 0.5].
The variations observed by the wall shear stress appear to strongly depend on the Richardson number. On
one-hand, reduced buoyancy e�ects (Ri = 0.1, 0.05) slow down the transition process and, as a result, the
�ow takes longer to stabilized back to equilibrium. On the other-hand, an increase of Ri up to 0.5 ampli�es
the perturbations by introducing stronger strati�cation e�ects that will take slightly longer to dissipate along
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the channel. To conclude, within the range of investigation, the variations in buoyancy e�ects have had a
limited in�uence on the �ow recovery. It is nevertheless recommended to keep the Richardson number within
a range of [0.2− 0.3] in order to insure a recovery length of 20 δ.

3.4 Turbulent �ow solution

The turbulent �ow that is generated by the temperature perturbation method is of primary interest. A
�rst assessment of the �ow development has been performed based on the recovery length of the wall shear
stress. A thorough investigation is now proposed by analyzing the turbulent statistics. Fig. 7 provides the
Reynolds shear stress along the channel, while the vertical pro�les of velocity and Reynolds normal stresses
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are provided in Fig. 8, at di�erent streamwise locations. All dimensionless quantities are time and spanwise
averaged.

x/δ
20 25

0 0.5 0.5 0.5 0.5 0.5

5 10 15

Figure 7: Vertical pro�les of Reynolds shear stress -< u′v′ >+ along the channel
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Figure 8: Turbulent statistics at di�erent streamwise locations a) Velocity b)-d) Normal Reynolds stresses.

We recall that the �rst moment statistics are imposed at the inlet in the form of the mean velocity pro�le
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obtained from case PBC. The turbulent in�ow method has very little in�uence on this quantity and, already
at 10 δ along the channel, the pro�le has converged back to the reference case PBC. Naturally, the second
moment statistics take longer to reach equilibrium since the turbulent structures require a certain length
to develop. Nevertheless, they show a good agreement with the reference at 15 δ. The largest di�erences
appear in the Reynolds stress normal to the wall < v′v′ >+, because of the vertical �ow motions induced
through buoyancy. These strati�cation e�ects are particularly visible towards the center of the channel and
take longer to dissipate as the �ow mixes downstream of the perturbation zone.

In accordance to the recovery length of 19.4 δ estimated previously, the �ow development in terms of the
recovery of Reynolds stresses is reached by 20 δ. At this location, all pro�les show satisfactory agreement
with the case PBC representative of a fully developed turbulent state.

4 Conclusion and Future Work

An alternative technique that generates in�ow turbulence for LES/DNS simulations applied to wall-bounded
incompressible �ows has been proposed. It consists in randomly perturbating the temperature in groups of
cells placed at the inlet of the domain. The previously developed technique suited for atmospheric �ows
is modi�ed by increasing the buoyancy forces within an active perturbation zone located in the upstream
part of the domain. These e�ects then become su�cient to induce velocity perturbations and eventually the
formation of coherent turbulent structures.
A parametric study has been carried out to improve the e�ciency of the method and minimize the develop-
ment distance in terms of the skin friction recovery and Reynolds stresses. The addition of a bu�er region at
the transition between the fully active zone, where the thermal expansion coe�cient is arti�cially increased
to retrieve su�ciently strong convective e�ects, and the rest of the �uid domain enables to insure a smoother
transition. A linear smoothing in this area exhibits the best performance, and further improvements are
attained by adjusting the lengths of the fully active region and bu�er zone to 5 δ and 8 δ respectively. For
this set-up, an optimum �ow development distance of 20 δ is achieved.
To conclude, the temperature perturbation method appears to be a very promising approach to e�ciently
generate turbulence at the in�ow. It presents major advantages over the classical velocity perturbation tech-
niques by its simplicity and the fact that only �rst moment statistics (i.e. the velocity pro�le) are required
as input. Future work will consist in proposing alternative ways of de�ning the perturbations in order to
reduce strati�cation e�ects and further improve the e�ciency of the method.
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