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Abstract: We present an optimal flow control framework in which algorithmic differentiation
(AD) is applied to the open-source multi-physics solver SU2 to obtain control sensitivities. An
AD-based consistent discrete adjoint solver is developed which directly inherits the convergence
properties of the primal flow solver due to the differentiation of the entire nonlinear fixed-point
iterator. The resultant framework is applied to the lift maximization and noise minimization case
of a wing-flap configuration.
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1 Introduction
One cannot overstate the tremendous technological importance of the ability to manipulate complex, un-
steady flows by tailoring it from one state into a more desired state. Consequently, decades of effort by
many researchers have been devoted to the field of active flow control (AFC). As shown by the rich body of
past research, AFC promises enormous benefits including reduced fuel consumption (and increased range),
noise reduction, and reduced system weight. AFC technologies have been proposed for a wide range of
applications such as separation control on aircraft high-lift systems for lift enhancement to enable short
landing and takeoff, modification of wake structures behind large transport trucks for drag reduction, and
noise suppression on wind turbine and engine fan blades. A good review of various AFC methodologies is
presented by Gad el Hak in [1].

Despite decades of research effort, a number of limitations have prevented AFC from being widely used
in real life applications. First and foremost, the optimal set of flow actuation parameters are not typically
known a priori for most complex 3D flows. In addition, large number of actuators lead to large numbers of
actuation parameters to be determined. To that end, adjoint-based optimization coupled with a high-fidelity
flow solver can be used to search for the optimal parameters at a fixed computational cost, independent
of the number of actuation parameters. A recent work involving optimal flow control of a large-scale 3D
high-lift configuration using a discrete adjoint approach is presented by Nemili et al. [2]. Another bottleneck
impeding the use of AFC is its robustness in real-time operations under uncertain operating conditions.
Therefore the ‘real-life’ challenges call for the development of a ’real-time’ strategy for the control of various
unsteady phenomena. To that end, the control sensitivity information attainable from the adjoint-based
methods will prove to be extremely useful in the off-line construction of the requisite surrogate model and
hence greatly enhance the accuracy of an online controller such as model predictive control.

In this paper, we present the development of an optimal AFC framework using an AD-based discrete
adjoint approach, on an open source multi-physics suite SU2 [3] for applications to separation control and
noise reduction problems. In particular, we couple the current AFC framework with our previous work on
aeroacoustic optimization [4], also developed on the basis of SU2. This allows us to investigate the potentially
competing design objectives by performing aerodynamic and aeroacoustic optimizations. Furthremore, it
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enables us to perform separation control using far-field noise as a constraint or vice versa in the near future.
The remainder of the paper is organized as follows. In Section 2, the unsteady SU2 solver including the active
flow control implementation and a coupled CFD-CAA model using a permeable surface Ffowcs Williams-
Hawkings (FW-H) approach as well as the optimization framework based on discrete adjoint and AD are
presented. The optimal flow control framework thus established are applied to the lift maximization and
noise minimization problem of a wing-flap geometry in Section 3. The conclusion and outlook for future
work are outlined in Section 4.

2 Optimal Active Flow Control Framework

2.1 Unsteady Multi-Physics Solver SU2
The Stanford University Unstructured (SU2) open source software suite was specifically developed for solving
problems governed by partial differential equations (PDEs) and PDE-constrained optimization problems. It
was developed with the aerodynamic shape optimization problems in mind. Therefore the suite is centered
around a RANS solver capable of simulating compressible, turbulent flows in aerospace applications. The
governing equations are spatially discretized using the finite volume method, on unstructured meshes. A
number of convective fluxes discretization schemes have been implemented, such as the Jameson-Schimdt-
Turkel (JST) scheme and the upwind Roe scheme. The turbulence can be either modeled by the Spalart-
Allmaras(S-A) model or the Menter Shear Stress Transport (SST) Model. For unsteady flows, a dual time-
stepping method can be used to obtain time-accurate solutions. SU2 suite has recently seen extensions in
the multi-disciplinary setting such as the inclusion of a wave equation solver and a structural solver, making
it well-suited for the unsteady multi-physics problems considered in this work. For numerical details on the
SU2 solver, please refer to the published work of Economon et al. of the SU2 team [3].

2.2 Coupled CFD-CAA Noise Prediction using a Permeable Surface Ffowcs
Williams-Hawkings Approach

For turbulent flows at low Mach numbers, direct computations of far-field noise is computationally pro-
hibitive [5]. A common way to perform far-field noise prediction is then to adopt a hybrid CFD-CAA
approach in which the near-field noise source region is computed using a high-fidelity CFD model and then
propagated to the far-field using a computationally cheaper wave equation like CAA model.
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Figure 1: Permeable control surface Γp separating the
CFD and CAA domains

To that end, integral methods based on the
Kirchhoff or Ffowcs Williams-Hawkings (FW-H)
formulations offer a more efficient approach for cal-
culating acoustic pressure at arbitrary observer lo-
cations by performing boundary integrals once the
appropriate field data is known. In this manner, the
radiated noise from a complex system can be cal-
culated given the near-field flow data supplied by
a CFD solution. In this work, noise prediction is
performed using such hybrid approach coupling the
SU2 URANS solver with a propagation model based
on a frequency-domain permeable surface Ffowcs
Williams-Hawkings approach [6]. For the sake of
keeping this paper self-contained, we briefly describe
the hybrid method here. The details of formulation,
implementation and validation of the hybrid CFD-
CAA solver can be found in our previous publica-
tion [4].

The permeable FW-H formulation distinguishes
itself from its original formulation in that it allows
fluid to flow through the discontinuity surface. Con-
sequently, one can define any arbitrary smooth sur-
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rounding surface Γp around the aerodynamic body S where details of the flow field are extracted and the
noise source can be propagated to the far-field. A schematic of such permeable surface is shown on Figure 1.
The fluid domain is therefore divided into two regions – the near-field CFD region Ω1 and far-field CAA
region Ω2. Further, we define the shape of Γp by a function, f = 0, such that f < 0 inside the control surface
and f > 0 outside the control surface. The CAA module is implemented and interfaced with the remainder
of the SU2 suite as follows: an unsteady flow simulation is first performed. At every time step, the primitive
flow variables at each point on the permeable surface are extracted in order to compute the noise source
terms. At the end of the CFD simulation, the respective mean values are subtracted from source terms as
they correspond to zero frequency components which do not generate any noise. Due to the fact that it is
practically impossible to ensure perfectly periodic flow data from most CFD calculations, a Hanning-type
windowing function is applied to the zero-mean source terms to prevent spectral leakage [6]. The windowed
source terms are then Fourier transformed using fast Fourier transformation (FFT). The pressure fluctua-
tion in frequency domain can be computed by numerically integrating along the permeable surface, for each
observer location ~x and frequency ω. Finally, pressure fluctuation p′(~x, t) in time domain can be recovered
using an inverse FFT.

2.3 Flow Actuation Formulation
The active flow control is realized using N actuation slits of synthetic jets with periodic blowing, which
are modeled as time-dependent in-flow boundary conditions on the aerodynamic surface. In particular, the
actuation velocity ~V iin prescribed at the i-th actuation slot is given by a ‘clipped’ sinusoidal function

~V iin = max{0, V iAsin(2πf i(t− φi))v̂i}, i = 1, ..., N (1)

where V iA, f
i and φi are the actuation amplitude, frequency and phase shift at each slot respectively and v̂i

is the unit vector in the direction of the actuation velocity. Note that the actuation velocity is clipped at a
minimum value of zero in order to simplify the numerical boundary condition necessary for this work. The
same approach is used by Nielsen and Jones [7].

2.4 AD-based Unsteady Discrete Adjoint Framework
The implementation of the discrete adjoint formulation in this work is eased by the use of automatic dif-
ferentiation (AD) [8], eliminating the error-prone hand-differentiation of the discretized equations. AD was
developed based on the observation that any simulation code, regardless of its complexity is merely a sequence
of elementary operations whose differentiation rules are well known. Therefore, by successive applications of
the chain-rule through the computer program, it is possible to compute both the simulation output and its
derivative with respect to prescribed design variables simultaneously. A remarkable feature of AD, owing to
its construction, is that it does not incur any truncation errors compared to the traditional finite difference
method. In particular, the derivatives are accurate to machine accuracy. This is a very attractive character-
istic of AD, since accurate evaluation of the gradient requires exact differentiation of the fixed point iterator
Gn as evidenced by Equations 15 and 16 in the following discussion.

In the following we present our AD-based unsteady discrete adjoint framework in the particular context
of active flow control, using a simple system of PDEs as an example. Consider a system of semi-discretized
PDEs as follows:

dU

dt
+R(U) = 0 (2)

where U is the spatially discretized state vector and R(U) is the discrete spatial residual vector. For the
sake of illustration, we assume the second-order backward difference is used for time discretization, which
leads to the following system of equations:

R∗(Un) =
3

2∆t
Un +R(Un)− 2

∆t
Un−1 +

1

2∆t
Un−2 = 0, n = 1, . . . , N (3)

The application of dual-time stepping method then solves the following problem through a fictitious time τ
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to converge to a steady state solution in (3):

dUn

dτ
+R∗(Un) = 0 (4)

Further assume the implicit Euler method is used to time march the above equation to steady state.

Unp+1 − Unp + ∆τR∗(Unp+1) = 0, p = 1, . . . ,M (5)

The resultant nonlinear system can be linearized around Unp to solve for the state Unp+1

Unp+1 − Unp + ∆τ

[
R∗(Unp ) +

∂R∗

∂U

∣∣∣∣n
p

(Unp+1 − Unp )

]
= 0, p = 1, . . . ,M (6)

This can be written in the form of a fixed-point iteration:

Unp+1 = Gn(Unp , U
n−1, Un−2), p = 1, . . . ,M, n = 1, . . . , N (7)

where Gn represents an iteration of the pseudo time stepping. Un−1 and Un−2 are the converged state
vectors at time iterations n− 1 and n− 2 respectively. The fixed point iteration converges to the numerical
solution Un:

Un = Gn(Un, Un−1, Un−2), n = 1, . . . , N (8)

The discrete optimization problem can then be posed as:

min
α

J = f(UN∗ , . . . , UN , α) (9)

subject to Un = Gn(Un, Un−1, Un−2, α), n = 1, . . . , N (10)

where α is the vector of active flow control variables and the objective function J is evaluated between
N∗ ≤ n ≤ N . One can express the Lagrangian associated with the above constrained optimization problem
as follows:

L = f(UN∗ , . . . , UN , α)−
N∑
n=1

[(Ūn)T (Un −Gn(Un, Un−1, Un−2, α))] (11)

where Ūn is the adjoint state vector at time level n. The first order optimality conditions are given by:

∂L

∂Ūn
= 0, n = 1, . . . , N (State equations) (12)

∂L

∂Un
= 0, n = 1, . . . , N (Adjoint equations) (13)

∂L

∂α
= 0, (Control equation) (14)

From (13), the unsteady discrete adjoint equations can be derived in the fixed point form as:

Ūni+1 =

(
∂Gn

∂Un

)T
Ūni +

(
∂Gn+1

∂Un

)T
Ūn+1 +

(
∂Gn+2

∂Un

)T
Ūn+2 +

(
∂f

∂Un

)T
, n = N, . . . , 1 (15)

where Ūn+1 and Ūn+2 are converged adjoint state vectors at time levels n + 1 and n + 2. The unsteady
adjoint equations above are solved backward in time. At each time level n we iterate through inner iteration
i until we have converged to Ūn. The highlighted terms here are evaluated in reverse mode AD at each
iteration. To do so, reverse accumulation [8] is performed at the beginning of each time level n to store
the computational graph by evaluating G using converged state solution Un. Then each inner iteration i
proceeds by re-evaulating the tape using the updated adjoint vector Ūni , giving the highlighted terms. This
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Un=1, α CFD Solver FW-H Solver J =

√
(p′)2

Un|Γp p′

Adjoint FWHAdjoint CFDdL
dα J̄ = 1

∂J
∂Un

∣∣Γp

Un

Ūn

Un|Γp

Figure 2: Computational chain of the coupled CFD-FWH noise prediction and optimization framework

continues within each time level n until the adjoint vector has converged to Ūn. Note that ∂f
∂Un = 0 for

n < N∗. The sensitivity gradient can then be computed from the adjoint solutions:

dL

dα
=
∂f

∂α
+

N∑
n=1

((
Ūn
)T ∂Gn

∂α

)
(16)

The computational chain for the coupled CFD-FWH noise prediction and noise-adjoint framework is
outlined on Figure 2. In the primal phase, unsteady flow field Un is realized at each time step n by the
SU2 CFD solver via Equation 7. Un|Γp denotes the conservative flow variables at time step n extracted
from the FW-H surface Γp which are then passed to the FW-H solver for far-field noise computation. In
the adjoint phase, ∂J

∂Un

∣∣Γp denotes the sensitivity of the noise objective with respect to conservative flow
variables evaluated Γp by the adjoint FW-H solver using Un|Γp , which is accumulated to the fixed-point
iteration for the adjoint flow variables Ūn in the adjoint CFD solver (Equation 15).

Typically AD is introduced based on the observation that every code is merely a sequence of elementary
functions that depend on one or two variables. Although this assumption leads to an intuitive approach for
the implementation it is rather inefficient, as we have to store information for each single operation. Another
approach is to apply AD on the statement-level. Here we only need to store information for each statement,
independent of the number of operations involved. An efficient way to compute the partial derivatives
of statements is the use of the Expression Template technique [9]. The overloaded operators no longer
return the (computationally expensive) result of an expression, but a small temporary object that acts as a
placeholder for this particular expression. Using this objects we can build an internal representation of each
expression to directly compute and store the required derivative information. These overloaded operators
and a corresponding datatype are provided by the C++ library CoDiPack [10]. A simple replacement of
the usual double datatype inside of SU2 with this new AD type enables the rapid development of adjoint
solvers for arbitrary state equations and physical models – the adjoint solver can be automatically updated
with primal code modification and one can easily define any objective function from any state variable. This
is an extremely attractive characteristic for unsteady optimization problems in the multidisciplinary setting
using a suite of multi-physics solvers where the objective function may be different depending on the type of
problems being addressed. To alleviate the high-memory requirements and for the general improvement of
performance we apply preccumulation strategies and an explicit treatment of the linear solvers. Furthermore,
the adjoint solver is automatically parallelized using the AdjointMPI library.

3 Optimization Results

3.1 Validation of Control Sensitivities
To validate the control sensitivities with respect to both aerodynamic and aeroacoustic design objectives, we
apply active flow actuation to the canonical test case of controlling the laminar (Re = 100) vortex shedding
of a 2D circular cylinder at M∞ = 0.2. Two actuation orifices are placed on the pressure recovery side
of the cylinder, located at ±75◦ from the rear stagnation point. The control variables are V iA, f

i, and
φi (actuation flow angle), on both slits. The in-flow velocity at each slit is assumed fixed normal to the
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slit surface. The baseline actuation for which the control sensitivities are evaluated are set to be in-phase
(φ1 = φ2 = 0) periodic blowing with the same actuation amplitude of V 1

A = V 2
A = 0.1U∞ and frequency of

f1 = f2 = 1.0Hz.
First, the control sensitivities with respect to the drag objective function (J = Cd) are computed using

the adjoint-mode AD over 100 time steps and compared with second order centered difference (FD) results
computed with a step size of δ = 10−6. As shown on Table 1, adjoint sensitivities attain excellent accuracy.
The disagreement in the phase-shift sensitivity is likely due to the loss of accuracy of the finite difference
result at such small sensitivity value.

Next, the control sensitivities with respect to the noise objective function (J =

√
(p′)2) is computed

using adjoint-mode AD and FD, on the same set of control parameters, over 100 time steps. As shown on
Table 2, the agreement is again excellent.

Consequently, we conclude that the control parameter sensitivities are validated to very good accuracy
and therefore can be used to perform active flow controls for aerodynamic and aeroacoustic objectives.

Slit 1 Finite Difference (FD) Adjoint Mode AD
V 1
A 0.008009100049 0.008008918670
ω1 -0.003363247458 -0.003363435599
φ1 -5.41051647928e-07 -5.40633964356e-07

Table 1: Control parameter sensitivities at Slit 1 with respect to the drag objective function (J = Cd) using
2nd order FD (δ = 10−6) and adjoint mode of AD, over 100 time steps

Slit 1 Finite Difference (FD) Adjoint Mode AD
V 1
A 5.47800027e-07 5.47836945e-07
ω1 2.23900542e-04 2.23972586e-04
φ1 -2.27060041e-04 -2.27071110e-04

Table 2: Control parameter sensitivities at Slit 1 with respect to the noise objective function (J =

√
(p′)2)

using 2nd order FD (δ = 10−6) and adjoint mode of AD, over 100 time steps

3.2 Optimal Flow Actuation for a Wing-Flap Configuration
In this subsection, we apply the optimal flow control framework outlined in Section 2 on the NLR7301
wing-flap geometry to perform lift maximization and noise minimization. The freestream Mach number is
M∞ = 0.2. Laminar flow is assumed with Re = 800. The wing-flap configuration is set at an angle of attack
of 15 degrees, with the flap deflected at 30 degrees. Under such post-stall condition, the configuration suffers
massive flow separation on both the wing and flap suction sides, leading to a marked loss of lift. In addition,
vortices periodically shed from the wing and the flap give rise to strong tonal noise.

The role of active flow control is to delay and reduce the extend of flow separation in order to enhance
the lift characteristics of the configuration, as well as suppressing the tonal noise generation. To that end,
we place a total of 18 actuation slits on the wing-flap configuration. 10 slits are installed on the suction
side of the main wing, evenly spaced between the 30% chord and the trailing edge, as shown on Figure 3(a).
8 slits are installed on the suction side of the flap, evenly spaced between the 25% flap chord and the flap
trailing edge, as shown on Figure 3(b). On the main wing, each slit surface span 1.5% of the main wing
surface while each slit on the flap span 3.0% of the flap surface.

An unstructured O-mesh is used for this geometry with 39,000 triangular elements and refinement on
each of the 18 slit surfaces. The permeable FW-H surface is a circle of diameter DFWH = 2.0 concentric
to geometric center of the wing-flap configuration. The unsteady CFD solution is computed using the
second-order dual time-stepping method with a time step of ∆t = 0.001.

Both lift maximization and noise minimization are performed. The lift maximization is performed over
800 time steps with the optimization window defined to be the last 300 time steps which approximately
correspond to 6 periods of vortex shedding. To further ensure that the unsteady flow has settled into a
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periodic steady state (due to the inherent assumption of the 2D frequency-domain FW-H formulation), the
noise minimization is performed over 1600 time steps with the optimization window defined to be the last 512
time steps. Furthermore, for the noise minimization case, the observation locations are placed equidistantly
along a line 20cwing below the cylinder at (−20cwing,−20cwing), (0,−20cwing), and (20cwing, 20cwing). To
ensure physically realizable actuation parameters, the velocity magnitude V iA and actuation frequency f i

are constrained to −10m/s ≤ V iA ≤ 10m/s and f i ≤ 50Hz for all 18 slits in both optimizations. The
baseline actuation parameters are set to be in-phase (φ1 = φ2 = 0) periodic blowing with the same actuation
amplitude of V 1

A = V 2
A = 1m/s and frequency of f1 = f2 = 1.0Hz.

The corresponding convergence histories for the two optimization cases are shown on Figure 4 (a) and
(b). Note that while approximately 550 additional lift counts are attained by optimal flow actuation in the
lift maximization case, little noise reduction is achieved. This is likely due to the fact that these actuators,
while periodically injecting fluid into the flow above the surface, generate noise themselves. The advantage
of optimal flow actuation is demonstrated on Figure 5 – while the baseline actuation parameters improve
the time-averaged lift by 761 counts from the un-actuated case, the optimal actuation parameters obtains
an additional 550 lift counts from the baseline performance.

Figure 6 to 8 compare the optimal actuation parameters obtained by the lift maximization and noise
minimization at all 18 slits. It appears that to maximize lift, the strength of actuation input (V iA on Figure 6)
required is at least an order of magnitude stronger than that is necessary in the noise minimized case, likely
due to the need to modify the massively separated flow structure immediately adjacent to the aerodynamic
surface. Note that Figure 6(a) also shows the optimal actuations used on the wing is at least three times
stronger than those on the flap. This is not surprising as at the angel of attack of 15 degrees, the flow over the
main wing is largely separated – more lift augmentation can be achieved by flow actuation on the wing than
the flap. Figure 7 shows that the actuators need to be operating at much higher frequency for noise reduction
purpose than for lift enhancement. This is due to the fact that to improve lift, the actuation frequency is
typically set at the shedding frequency which is much lower than the frequency necessary to suppress noise
generation – a phenomenon containing high frequency components due to the complex interactions of vortices
shedding from both the wing and the flap. Figure 8 shows that the phase disparities between various slits
are much larger in the lift-maximized case than the noise minimized case.

Finally, it must be noted that the aerodynamic and aeroacoustic design objectives are in direct com-
petition with each other in this case. As shown by the red off-diagonal entries on Table 3, when the set
of optimal actuation parameters obtained in the lift-maximized case is used, it leads to an amplification of
far-field noise. Conversely, the noise-minimized set of control parameters results in a significant loss of lift
even from the baseline performance.
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Figure 3: 18 actuation slits on the wing and flap suction side
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Figure 4: Optimization history of the lift maximization and noise minimization cases of the NLR7301 wing-
flap geometry
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Figure 5: Time history of lift coefficient over 800 time iterations for the un-actuated (slits-coverd), baseline
actuated and optimally actuated cases
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Figure 6: Optimal actuation velocity magnitude V iA of the lift-maximized (a) and noise-minimized case (b)
at the 18 actuation slots on the wing and flap suction side
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Figure 7: Optimal actuation frequency f i of the lift-maximized (a) and noise-minimized case (b) at the 18
actuation slots on the wing and flap suction side

NLR7301 Lift Maximized Noise Minimized
JL 1.8735 1.9283 1.8471
JN 2.3989×10−3 2.6475×10−3 2.3634×10−3

Table 3: Performance comparison between lift maximization and noise minimization results

4 Conclusion and Future Work
We have developed an AD-based discrete adjoint framework to perform active flow control in order to reduce
both flow separation and far-field noise. The resultant unsteady control sensitivities of a periodically blowing
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Figure 8: Optimal actuation phase shift φi of the lift-maximized (a) and noise-minimized case (b) at the 18
actuation slots on the wing and flap suction side

actuator with respect to both aerodynamic and aeroacoustic design objectives have been shown to be highly
accurate using the canonical test case of a cylinder undergoing laminar vortex shedding. We are ready to
perform optimal flow control on more challenging configurations.

The active flow control framework is applied to a NRL7301 wing-flap geometry for both lift maximization
and noise minimization. The results show that significant lift augmentation can be achieved by optimally
actuating the flow. In addition, the aerodynamic and aeroacoustic design objectives are shown to be com-
peting in that a noise-minimized set of actuation parameters lead to an unacceptable loss of lift and vice
versa.

As the next step, we plan to present a hybrid shape-AFC optimization on a droop nose airfoil with a
high flap deflection. Lift enhancement and noise suppression will be achieved via shape optimization of the
main airfoil body including the droop nose and optimal flow control on the flap suction side.

One shortcoming of AFC, among others, is its energy expenditure – auxiliary energy input is required to
actuate the flow. In the near future, this will be addressed by adding an optimization constraint accounting
for the actuation energy as suggested by Wassen and Thiele [11]
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