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Abstract: The performance of two finite-volume methods for diffusive fluxes 

calculation, i.e. the Coordinate Transformation Method (CTM) and Surface 

Decomposition Method with Improved Deferred Correction Scheme (SDM-IDC), is 

analyzed for regular and highly skewed meshes. After the implementation in an in-

house CFD code for laminar incompressible flow based on the SIMPLE algorithm, 

the accuracy, computational efficiency and convergence speed for steady state 

problems is assessed by simulating various flow problems. The lid-driven skewed 

cavity case shows that the CTM method can perform better than the SDM-IDC 

method in terms of robustness and accuracy while the SDM-IDC method is 

computationally more efficient. 
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1     Introduction 
 
 The accurate computation of the diffusive fluxes is one of the main concerns in the field of 

computational fluid dynamics and heat transfer. For that purpose, the CTM method was presented in 

[1] and the SDM-IDC method was presented in [1] – [3] by Traoré et al in 2009 and 2014. By solving 

the Poisson equation for a scalar field, it was revealed that the SDM-IDC method is more accurate for 

determination of the second-order derivatives than the CTM method. However, the question arises what 

happens if those two methods are used to solve the Navier-Stokes equations, not just the Poisson 

equation. 

 In this paper, these two methods are implemented into an in-house solver for the Navier-Stokes 

equations to analyze in more detail whether the same results with respect to the accuracy are obtained 

as for the Poisson equation. The CFD code solves the Navier-Stokes equations for 2D steady 

incompressible laminar flow and is based on the SIMPLE algorithm, in which the detail can be found 

in [4] and [5]. The performance of the two discretization methods are compared not only in terms of 

accuracy and convergence but also in computational costs. The 2D lid-driven skewed cavity is used as 

a test case to demonstrate their performances. For this case, meshes with different skewness ranging 

from purely orthogonal to angles of 15, 30, 45, 60, 75, and 89 degrees are used, as shown in Figure 1. 
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2     Methods for Diffusive Fluxes Calculation 
 
 In order to illustrate the differences between the CTM method and the SDM-IDC method, first 

consider the governing equations: 
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where 𝜙 represents the velocity components u and v for the x- and y-momentum equations respectively. 

By integrating Equations (1) and (2) over a cell and applying the divergence theorem, the following 

discrete forms are obtained: 
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where 𝐹𝑓, 𝑉⃑ 𝑓 and 𝐴 𝑓 can be expressed as: 
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 The diffusion term in Equation (4) can be split into two parts: the primary diffusion along cell 

centroid direction and the remaining part, i.e. the secondary diffusion, 𝑆𝑓, due to the non-orthogonality 

of the grid, which are the first and second terms on the right-hand side of Equation (8) respectively. 
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Figure 1: The non-orthogonal angle θ and the computational domain of the skewed cavity.  
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 When the grid is non-orthogonal, the secondary diffusion term becomes more and more 

important as the non-orthogonal angle increases. The accurate computation of these secondary fluxes 

leads to the accurate results. 

 Two methods are presented in this paper. Both methods use the second-order central 

differencing scheme in their derivation and can be put in the form of Equation (8). The difference is in 

the calculation of the secondary diffusion part. The derivation of both methods can be described as 

follows: 

 

2.1     Coordinate Transformation Method (CTM) 

In this method, the diffusion term is defined in the Cartesian coordinate as: 
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Equation (10) is then transformed into a local coordinate system    as shown in Figure 2.  

The following equation is obtained: 
  yx yx 
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After re-arranging Equation (11), the expression for x  and y  can be written as: 
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where  ,  , x , x , y  and y  can be expressed by the second-order central differencing 

scheme as: 
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Figure 2: Geometric relationship between two cells on a common face “f”.  
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where   is the distance between the two centroids P and K, and   is the distance between the 

nodes a and b. 

 

After substituting Equation (13) into Equation (12) and then into Equation (10) with some 

arrangements, the secondary diffusion term, 𝑆𝑓,  in Equation (8) is obtained as: 
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The values at node a and node b are calculated by the area-weighted averaging method as shown in 

Equation (15) where 𝑁 is the number of cells sharing the same node and   is the volume of the 

cell. 
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2.2     Surface Decomposition Method with Improved Deferred Correction Scheme  

(SDM-IDC) 

In this method, the surface normal vector is decomposed into two parts: 
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According to Equation (16), the diffusion term is then decomposed as: 
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 is defined, according to the improved deferred correction (IDC) scheme in [1] which 

shows better results when compared to the standard deferred correction scheme (SDC) in [2] and [3], 

as: 
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After introducing Equation (18) into Equation (17), the secondary diffusion term, 𝑆𝑓,  in Equation (8) 

is obtained as:  
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However, instead of using Equation (19) to calculate the secondary diffusion in the SDM-IDC 

method, the deferred correction approach leads to: 
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Equation (20) is written in terms of the difference between the total diffusion across face “f” and the 

primary diffusion along the cell centroid direction. The face gradient is calculated from the result in 

the previous iteration of the cell on both sides of the face using the linear interpolation as follows: 
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The gradient at cell center is calculated by the divergence theorem which can be written as: 
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where f  in Equation (22) is interpolated in the same manner as the face gradient in Equation (21). 
 

3     Lid-Driven Skewed Cavity Flow 
 
 Cavity flow is one of the most common test cases for the validation of the numerical schemes. 

It has been chosen as a test case in this study due to the ease of controlling the grid skewness and the 

available existing numerical results for comparison. Several studies have been done on the skewed 

cavity flow such as Erturk and Dursun in 2007 [6], and Thaker and Banerjee in 2011 [7]. The Reynolds 

number is set to 1000 in this study. Left, bottom, and right boundaries are prescribed with the stationary 

no-slip wall condition while the top boundary is a moving wall, as shown earlier in Figure 1. 

 The orthogonal grid, 𝜃 = 0 degree, is used in the validation process of the in-house CFD code 

because of the absence of the secondary diffusion term. The result obtained from the in-house CFD 

code is compared to a licensed commercial software, ANSYS Fluent, as shown in Figure 4 where both 

results are in good agreement and only the X-velocity profile is shown. 
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Figure 3: Decomposition of the surface normal vector according to  

the improved deferred correction (IDC) scheme.  
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 The 2nd-order upwind scheme has been used and the grid resolution has been increased until 

the result is matched with the reference data taken from [6]. The study shows that the grid resolution of 

120 x 120 cells is sufficiently fine as shown in Figure 5 where only the X-velocity profile is shown. 

 

  
 

 

 

 

4     Results and Discussion 
 
 Since there is no contribution from the secondary diffusion term on the orthogonal grid, both 

methods show the same result as shown in Figure 4 and Figure 5. The differences can be seen when the 

grid is non-orthogonal in which the X-velocity and Y-velocity profiles are plotted along the line A-B 

and C-D as shown in Figure 6 respectively. 
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Figure 4: Comparison of the X-velocity profile obtained from the in-house code 

and ANSYS Fluent at 𝜃 = 0 degree.  

Figure 5: Comparison of the X-velocity profile obtained from different schemes 

and grid resolutions at 𝜃 = 0 degree.  
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Figure 6: The middle line A-B and C-D in the domain.  
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Figure 7: X-velocity profile (Left) and Y-velocity profile (Right)  

at 𝜃 = 15 degrees. 

Figure 8: X-velocity profile (Left) and Y-velocity profile (Right)  

at 𝜃 = 30 degrees. 

Figure 9: X-velocity profile (Left) and Y-velocity profile (Right)  

at 𝜃 = 45 degrees. 



8 
 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

-0.30 0.10 0.50 0.90 1.30

Y-
co

o
rd

in
at

e
(m

)

X-velocity (m/s)

Erturk and Dursun, 2007

CTM
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.30 0.60 0.90 1.20 1.50

Y-
ve

lo
ci

ty
(m

/s
)

X-coordinate (m)

Erturk and Dursun, 2007

CTM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-0.50 0.00 0.50 1.00 1.50

Y-
co

o
rd

in
at

e
(m

)

X-velocity (m/s)

Erturk and Dursun, 2007

CTM
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.40 0.70 1.00 1.30 1.60

Y-
ve

lo
ci

ty
(m

/s
)

X-coordinate (m)

Erturk and Dursun, 2007

CTM

0.000

0.004

0.008

0.012

0.016

0.020

-0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20

Y-
co

o
rd

in
at

e
(m

)

X-velocity (m/s)

CTM

-0.010

-0.005

0.000

0.005

0.010

0.40 0.70 1.00 1.30 1.60

Y-
ve

lo
ci

ty
(m

/s
)

X-coordinate (m)

CTM

Figure 10: X-velocity profile (Left) and Y-velocity profile (Right)  

at 𝜃 = 60 degrees. 

Figure 11: X-velocity profile (Left) and Y-velocity profile (Right)  

at 𝜃 = 75 degrees. 

Figure 12: X-velocity profile (Left) and Y-velocity profile (Right)  

at 𝜃 = 89 degrees. 
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 In contrast to the earlier study by Traoré et al in [1], the CTM method is more accurate and 

converges even on the extremely skewed mesh where 𝜃 = 89 degrees while the SDM-IDC method fails 

when the angle is greater than 45 degrees.  

 In terms of the computational cost, the SDM-IDC method requires lower memory of the 

computer and also needs less time per iteration than the CTM method (observed during the iterations) 

due to the fact that the SDM-IDC method directly uses the variables at the cell center whereas the CTM 

method needs to calculate the values at the vertices in every iteration. The numbers of required iterations 

of both methods to converge to the limit of 1.0e-6 are summarized in Table 1. 

 

𝜃 
(degrees) 

Number of iterations 

SDM-IDC CTM 

0 7,998 7,998 

15 10,408 13,067 

30 29,409 41,647 

45 11,394 9,821 

60 - 16,136 

75 - 20,089 

89 - 195,304 

 

 

 

 From the programming point of view, the accuracy and computational cost of both methods 

can be explained by the cell stencil in Figure 13. In 2D structured grid, the CTM method requires all 9 

cells in order to calculate the total fluxes in the considered cell “P” which is the reason why this method 

is more accurate than the SDM-IDC method which requires only 5 cells. 
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 However, the SDM-IDC method can be easily extended to 3D grid since there are always two 

cells connected to a face, hence Equation (20) can be directly applied to 3D problems. On the other 

hand, Equation (14) is resulted from the fact that the tangential direction can be uniquely defined in 2D 

problems. In 3D problems, a face changes from a 2D-line to a 3D-surface, and hence the tangential 

direction can be defined in numerous ways, which make the CTM method becomes trickier to extend 

to 3D grid. 

 

 

 

 

 

Table 1: Summary of the number of iterations. 

Figure 13: Cell stencil in case of 2D structured grid.  
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5     Conclusion 
 
 It can be concluded that the CTM method can perform better than the SDM-IDC method when 

applied to solve the Navier-Stokes equations due to the higher accuracy and ability to converge on the 

extremely skewed mesh. However, the advantage of the SDM-IDC method is the lower requirement of 

computational cost and lower time per iteration.  
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