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Table 1: Grid refinement test for the advection of the sine wave problem 

 Grid L2 Order 

Original 
LSM 

Regular Grid 

51x51 6.1043E-02 - 

101x101 1.7713E-02 1.785 
201x201 4.5605E-03 1.958 

Random Grid 
51x51 1.5394E-02 - 

101x101 3.0832E-02 -1.002 

201x201 1.9697E-02 0.646 

GC-LSM 

Regular Grid 

51x51 6.1043E-02 - 

101x101 1.7713E-02 1.785 
201x201 4.5605E-03 1.958 

Random Grid 
51x51 4.3327E-02 - 

101x101 7.5052E-03 2.529 

201x201 1.6536E-03 2.182 
 

Figure 6:  Regular grid and random grid 

Figure 5: Results of the sine wave problem : (a) FVM on regular 
grid, (b) LSM on random grid, (c) GC-LSM  on random grid 

(a)                                                  (b)                                                  (c)  
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5.2. Hypersonic Blunt Body 
 
The second validation case is a blunt body problem in hypersonic flows. Its purpose is to check the 
robustness, accuracy, convergence of the developed method. The free stream Mach number, 𝑀𝑀∞, is 10, 
so a strong shock wave appear in front of the blunt body. Two types of the grid are used for this test. 
One of them is a balanced grid and the other is a perturbed grid, as shown in Fig. (7). The latter can be 
constructed by Eq. (65) in a similar way. So, the computing nodes and the connectivity are chosen in 
the same manner as the first validation case. AUSMPW+ scheme and LU-SGS scheme were used for 
the mid-point flux and time integration method, respectively. To remove the numerical oscillation 
around shock wave, Minmod limiter was used. 
Fig. (8) shows pressure distribution of Least Squares Method, Least Squares Method with Geometric 
Conservation Law and Finite Volume Method on the perturbed grid. The result of the FVM on balanced 
grid (𝛋𝛋 = 𝟎𝟎.𝟎𝟎) is a reference of the case. The pressure distribution along stagnation line shown in Fig. 
(8) indicates that the proposed method has better shock capturing performance such as shock position 
and strength, compared to original LSM. Also, we can see that only satisfaction of the geometric 
conservation law without flux conservation law can effectively enhances accuracy and robustness of 
the solution. The convergence histories (L2-norm error) presented in Fig. (9) show that the proposed 
method also converged to machine accuracy. Thus, the proposed method is recommended for simulation 
of compressible flows, especially for hypersonic flows.  
 

 

 

Figure 7: balanced grid and perturbed grid(𝛋𝛋 = 𝟎𝟎.𝟓𝟓) 

Figure 8: pressure distribution along 
stagnation line (𝛋𝛋 = 𝟎𝟎.𝟓𝟓) 
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5.3. Moving Sphere 
 
A moving sphere problem was selected as the last validation case. This problem was chosen to verify 
the accuracy and robustness in more complex grid system. The node distribution is shown in Fig. (10), 
and total number of nodes is 722,464. The nodes and connectivity generation algorithm which is 
developed by Rhee [11] are used. The prismatic points of the sphere move with the sphere, but 
background points are fixed. So, some of the background points near the prismatic points are added or 
removed when sphere is moved, and the connectivity of the point whose surrounding points are changed 
should be newly obtained. The speed of the sphere is 𝑀𝑀𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 0.5 and free stream Mach number is 
𝑀𝑀∞ = 1.5. So, the relative free stream Mach number of sphere is 2. The reference case is stationary 
sphere problem with 𝑀𝑀∞ = 2. The spatial discretization scheme is GC-LSM with AUSMPW+ and the 
time integration scheme is LU-SGS with dual time-stepping.  
Fig. (11) shows the comparison of the pressure field between the test case and reference. From the 
obtained numerical results, it seems that both results are almost same although the nodes distribution 
are different because speed of each sphere is different. To confirm this in detail, Fig. (12) shows the 
pressure coefficient distribution along stagnation line and surface. It can be also seen that the pressure 
distribution including shock profile are very similar to the reference. Thus, this results presented here 
may show development possibility of the meshless method in supersonic or hypersonic flows on 
complex geometry. 
 

Figure 9: Comparisons of convergence histories 

Direction of movement 

Inflow 

Figure 10: node distribution around sphere 
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6     Conclusion and Future Work 
 
In this study, Least Squares Method with Geometric Conservation Law(GC-LSM) is developed to 
analyze compressible flow robustly and accurately even when strong shock exists. The method of 
Lagrange multiplier was used to satisfy geometry conservation law and 1st order consistency to least 
squares method. AUSMPW+ scheme which can compute accurately in hypersonic flows, and LU-SGS 
for implicit time integration are applied to the Meshless method. Numerical experiments show that the 
developed method gives improvements on accuracy and robustness in compressible flows with strong 
shock according to the comparison analyses of the numerical results with the original version of Least 
Squares Method.  
 
 
 

inflow inflow 

Figure 11: pressure contours 

Figure 12: pressure distribution along stagnation line and surface 



15 
 

Acknowledgments 
 
- This research was supported by Space Core Technology Program through the National Research 
Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-
2015M1A3A3A05027630) 
- This work was supported by the Brain Korea 21 Plus Project in 2016 
 
References 
 
[1] G. R. Liu. Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, 2003. 
[2] D. Sridar and N. Balakrishnan. An upwind finite difference scheme for meshless solvers. Journal 

of Computational Physics. 189: 1-29, 2003. 
[3] A. Katz and A. Jameson. A Comparison of Various Meshless Schemes Within a Unified 

Algorithm. AIAA 2009-596, 47th AIAA Aerospace Sciences Meeting Including The New 
Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009. 

[4] J. Huh, K. Kim and S. Jung. Meshless Method for Simulation of 2-D Compressible Flow. The 
2013 Asia-Pacific International Symposium on Aerospace Technology, Takamatsu, Japan, 2013. 

[5] K. Kim, C. Kim and O. Rho. Methods for the Accurate Computations of Hypersonic Flows I. 
AUSMPW+ Scheme, Journal of Computational Physics, 174: 38-80, 2001. 

[6] D. Shepard. A two-dimensional function for irregularly spaced points. Proceedings of the 23rd 
ACM National Conference, 517-524, 1968. 

[7] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Math. 
Comput. 37: 141–158, 1981. 

[8] A. Jameson. Analysis and Design of Numerical Schemes for Gas Dynamics 1 Artificial Diffusion, 
Upwind Biasing, Limiters and Their Effect on Accuracy and Multigrid Convergence. International 
Journal of Computational Fluid Dynamics, 4:171-218, 1995. 

[9] S. Yoon and A. Jameson. Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and 
Navier-Stokes Equations, AIAA Journal, 26(9): 1025-1026, 1988. 

[10]  H. Q. Chen and C. Shu. An Efficient Implicit Mesh-Free Method To Solve Two-Dimensional 
Compressible Euler Equations. International Journal of Modern Physics C., 16(3): 439-454, 2005.  

[11]  J. Rhee, J. Huh, K. Kim and S. Jung. Three dimensional meshless point generation technique for 
complex geometry. The 2015 World Congress on Aeronautics, Nano, Bio, Robotics, and Energy, 
Incheon, Korea, 2015. 


