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Abstract: The structural behavior of a slender aero spike member on a flat faced 
cylinder model under supersonic unsteady flow conditions has been studied using 
Fluid-Structure interaction (FSI) simulations.  The aero spike configuration has been 
selected by carrying out axisymmetric CFD simulations at select Mach (M) to have 
maximum flow unsteadiness.  2-way FSI simulation has been carried out using Ansys 
software considering aluminium alloy for aero spike structure. The structural response 
of the aero spike has been studied at M 3.0 and  = 0, 5 and 10.  
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1 Introduction 
The use of aeropike has been known for its drag reduction characteristics for highly blunt 

bodies.  Works on aerospike has been dated back from 1952 and few flight vehicles have already been 
used them for its advantages [1]. However, the unsteady phenomena associated with these aerospike 
may trigger the structural vibrations over these slender members, sometimes leading to structural 
failure. Numerical study has been carried out to predict the transient pressure and force signatures 
over the flat cylinder model. The effects of flow unsteadiness on the spiked aero configurations has 
been studied to understand the structural characteristics of the airframe due to associated heavy 
pulsation/oscillation of shock waves.   

In this paper, transient axisymmetric CFD simulations have been carried out at M 2, 3 and 4 and 

 0 for two aero spike shapes and two slenderness ratios.  The Fluid structural interaction simulation 

using Ansys Mechanical and Ansys Fluent has been carried out in this study at M  3.0 and  0, 5 
and 10for the aero spike configuration having the maximum flow unsteadiness. 

2 Literature Review 
The works on aero spike have started since 1952 by Mair.W [1] in which he has studied the 

interaction between fore body shock and the boundary layer over the spike thereby reducing drag. 
Frequency of spike oscillations has been observed to be 6 kHz.  D J Maull [2] in 1960 has 
experimentally studied the spike oscillation using a sewing needle on five nose shapes at M 6.8.  He 

has identified that flow oscillations have been very prominent for 0.25 Ls/D  2.5.  G Jagadeesh et al 

[3] in 2003 has reported that over a blunt 120 apex angle cone model, shock oscillations are less 
violent for blunt spikes as compared to sharp spikes at M 5.75.  In 2004 Daniel Feszty et al ([5] and 
[6]) have brought the clear definition of pulsation and oscillation modes of shock wave unsteadiness 
over flat cylinder models. 
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