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Abstract: Sickle cell disease (SCD) is a hereditary blood disorder in which the red 

blood cells (RBC) have abnormal cell structure and function. These abnormal RBC 

cannot efficiently transport and release oxygen as in a normal cell. In this 

investigation spectral methods in a 2-D computational model of flow dynamics are 

implemented in order to simulate plasma velocities, oxygen diffusion, and RBC 

deformation in the microcirculation. A mixed Chebyshev and Fourier spectral 

scheme with finite difference scheme is used to compute the flow field, oxygen 

diffusion, and RBC deformation. A level set computational method is used to 

advect the RBC membrane on a staggered grid. Simulations are made to compare 

the computed profiles with the results obtained by Tekleab and Harris [1]. 

Differences in profiles are discussed and both sets of profiles are compared with 

the three-dimensional model of Le Floch-Yin [2]. 
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1     Introduction 
 
In order to increase the knowledge of human blood flow in the capillaries, mathematical models may 

be useful. In the case of diseases such as Leukemia, malaria and sickle cell anemia models that 

capture the affect of physiological parameters are novel. Sickle cell disease [SCD] is a genetic 

disorder that is caused by sickle-shaped red blood cells [RBC] that clog capillaries in humans. It is 

characterized by a state of anemia, or a deficiency of hemoglobin, which alters the structure of the 

RBC or erythrocytes. Consequently, the blood plasma dynamics, blood cell deformation and 

convection, oxygen diffusion across the membrane of RBC and the transport of oxygen into the blood 

plasma and the surrounding tissue is compromised. Le Floch-Yin [2] has developed an unsteady 

three-dimensional systemic macroscopic model of human blood flow with a sickle and normal cell 

deformation and oxygen deformation in the capillaries. Tekleab [3] has also developed a two-

dimensional, three-layers of the same problem with great results when compared to Le Floch-Yin 

results. In both cases finite differences schemes were used for implementing the model. In this report 

we detail the development and implementation of a mixed spectral-finite differences scheme to 

mathematically model the unsteady two-dimensional human blood plasma flow with oxygen transport 

and blood cell membrane deformation. Computed profiles are compared with other published data. 

 



2 

 

2     Problem Statement 
 
With the same ambition of simplicity in a systemic macroscopic two-dimensional model, the 3-layer 

model of the physical system [3] is used instead of 5-layers model as Le Floch-Yin [2], that results in 

a higher computational costs. The 5-layers model of LeFloch-Yin [2] was neglected due to the large 

amount of RBCs and plasma in the 5-layers model and the requirement for consistence when the 

analyzing the smallest blood vessels or capillaries with one cell thickness. 

 

 Therefore, for our computational domain is considered the RBC membrane, blood plasma and 

surrounding tissue (3-layer model), which is depicts in Figure 1. 

 

 

 

 
 

 

 

 

In this model the microcirculation system is considered an isothermal and incompressible blood 

plasma flow, with Navier-Stokes as a governing equation accounting for the conservation of mass. 

To begin the mathematical model, we will use the following set of governing fluid dynamics 

equations: (1) Continuity equation, (2) Navier-Stokes equation and (3) Frick’s Law of mass 

diffusion to deal with the diffusion and transport of oxygen. 

 

 ∇ ∙ 𝑣 = 0    (1) 
  

 𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑣 ∙ ∇𝑣) = −∇𝑝 + 𝜇∇2𝑣    (2) 

  

 
𝜕𝑐

𝜕𝑡
+ ∇ ∙ (𝑐𝑣 − 𝐷𝑜𝑥∇𝑐) = 𝑅(𝑐)    (3) 

 

 

Figure 1: 3-Layer Capillary Model[1] 
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3     Computational Model 
 
The blood plasma flow conditions is based on a two dimensional Navier-Stokes equations, which 

have been reduced to vorticity-stream function form. For the implementation, Chebyshev polynomials 

are used in inhomogenous and Fourier spectral scheme in homogeneous direction [4]. Initially with 

non-slip boundary condition, differentiation matrices solve the system of equations. In order to handle 

the physical geometry of the problem, a pseudospectral “staggered” grid is used. The oxygen 

concentration calculations are based in a finite differences scheme developed by Tekleab [3]. 

 

3.1     Blood Plasma Flow 

The blood plasma flow is mathematically represented by the two-dimensional incompressible form 

of Navier-Stokes equation (2) and (3). The dimensionless form of these equations is given by: 

 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
−

1

𝑅𝑒
∆𝑢 = −

𝜕𝑝

𝜕𝑥
    (4) 

  

 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
−

1

𝑅𝑒
∆𝑣 = −

𝜕𝑝

𝜕𝑦
    (5) 

 

Differentiating eq. (4) with respect to y and eq. (5) with respect to x and adding them, we obtain the 

vorticity-streamfunction formulation. Keeping in mind that the streamfunction 𝜓 and vorticity 𝜔 

are defined by: 

 

    u =
∂ψ

∂y
, v = -

∂ψ

∂x
, ω =

∂u

∂x
-
∂u

∂y
    (6) 

  

  
  

Therefore, the system of equation in the vorticity form with Poisson equation is shown bellow: 

 

 
𝜕𝜔

𝜕𝑡
= 

𝜕𝜓

𝜕𝑥

𝜕𝜔

𝜕𝑦
−
𝜕𝜓

𝜕𝑦

𝜕𝜔

𝜕𝑥
+ 𝜈 (

𝜕2𝜔

𝜕𝑥2
+
𝜕2𝜔

𝜕𝑦2
)    (7) 

  

 𝜔 = −(
𝜕2𝜓

𝜕𝑥2
+
𝜕2𝜓

𝜕𝑦2
)    (8) 

 

 

 

3.2    Spatial and Time Discretization  

 

Pseudospectral methods are the most flexible and easiest among all spectral methods for 

implementation and afford spectral convergence for smooth solutions [5]. The main idea is to 

choose a set of collocation points for a given grid, making the residual function to be zero at this 

new points. Moreover an interpolate polynomial must be chosen to fit those values. The selection of 

it is based on the sampling theorem which says that there are infinite possible interpolate for any 

grid, but there is only one band-limited interpolant defined in a specific case [6]. 
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In order to create the differentiation matrices, the unknown function 𝑢(𝑥) with 𝑛 + 1 . Collocation 

points {𝑥𝑗}𝑗=0
𝑛

 has the interpolating polynomial 

 

 𝑃𝑛𝑢(𝑥) = ∑ 𝑢(𝑥𝑗)
𝑛−1
𝑗 𝑞𝑗(𝑥)    (9) 
  

Where 𝑞𝑗(𝑥)  are the polynomials, which satisfy the Kronecker delta function. To obtain an 

approximation of 𝑠 -order derivation for the function 𝑢(𝑥) , we must derive 𝑠  times at the 

collocation points. The pseudospectral approximation is shown bellow: 

  

 
𝑑𝑠𝑃𝑛𝑢(𝑥𝑘)

𝑑𝑥𝑠
= ∑ 𝑢(𝑥𝑗)

𝑛−1
𝑗 [

𝑑𝑠

𝑑𝑥𝑠
𝑞𝑗(𝑥)]

𝑥𝑘
= ∑ 𝑢(𝑥𝑗)

𝑛−1
𝑗 𝐷𝑘𝑗

(𝑠)    (10) 

  

 where 𝐷𝑘𝑗
(𝑠)

 are the entries of the 𝑠-order differentiating matrix 𝐷(𝑠). 

 

In our case, for the homogeneous direction is Fourier collocation method is used. After domain 

corrections and known that this domain is a subset of the interval [0,2𝜋], we have: 

 

 𝑃(𝑥) =  
ℎ

2𝜋
∑ 𝑒𝑖𝑘𝑥 
𝑁/2
𝑘=−𝑁/2 = 

ℎ

2𝜋
cos(𝑥 2⁄ )

sin(𝑁𝑥 2⁄ )

sin(𝑥 2⁄ )
    (11) 

  

The number of collocation points is given by odd number 𝑁, in this way, the spacing of the 

grid points is ℎ = 2𝜋 𝑁⁄  and consequently we can write 𝑃(𝑥) dependent of a periodic sinc 

function 
 

 𝑆𝑁(𝑥) =  
sin(𝜋𝑥 ℎ⁄ )

(2𝜋 ℎ⁄ ) tan(𝑥 2⁄ )
    (12) 

  

which gives us the entries of the 1𝑠𝑡order differentiation matrix 𝐷𝑁: 

 

 

 

𝑆′𝑁(𝑥𝑗) =  {

 0                                         𝑗 ≡ 0  (𝑚𝑜𝑑 𝑁)
    

1

2
(−1)𝑗 cot(𝑗ℎ 2⁄ )         𝑗 ≢ 0 (𝑚𝑜𝑑 𝑁)

     

 

 

 Analogous, it is possible to write the 2𝑛𝑑order differentiation matrix 𝐷𝑓𝑁
(2)

 entries 

  

  

 𝑆′′𝑁(𝑥𝑗) =  {

         −
𝜋2

3ℎ2
−
1

6
                                  𝑗 ≡ 0  (𝑚𝑜𝑑 𝑁)  

  

−
(−1)𝑗

2 sin2(𝑗ℎ 2⁄ )
                           𝑗 ≢ 0 (𝑚𝑜𝑑 𝑁)
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As those are Toeplitz matrices, having constant entries along diagonals, their construction and 

implementation is easier. 

In spectral methods when working with algebraic polynomials, an irregular grid with asymptotic 

spacing must be used; otherwise, the catastrophic Runge Phenomenon appears. In this phenomenon, 

the discretization not only fails to converge as 𝑁 → ∞, but also, get worse at a rate 2𝑁 [6]. 

  
 For those reasons, in the homogeneous direction, the so-called Chebyshev Gauss-Lobatto 

collocation points [7], defined on the entire interval [−1, 1] is used. In addition, the interpolate 

polynomial 𝑃(𝑋) is initially written in the Lagrange form in order to satisfy the initial and final 

points in the interval, 𝑥0 = −1 and 𝑥1 = 1 respectively. Interpolating through data 𝑣0 and 𝑣1 as 

an example with 𝑁 = 1: 

  

 𝑃(𝑥) =  
1

2
(1 + 𝑥)𝑣0 +

1

2
(1 − 𝑥)𝑣1 ⟹ 𝑃′(𝑥) =

1

2
𝑣0 −

1

2
𝑣1 

  

where 𝑃′(𝑥) is the derivate of the interpolating polynomial. Therefore, the 1𝑠𝑡order differentiation 

matrix can be written as: 

  

 𝐷𝑐1 = (

1

2
−
1

2
1

2
−
1

2

)    (13) 

 

Expanding for a 𝑁𝑡ℎ  order differentiation matrix, it is possible to obtain the following 

entries for this matrix: 

 

 

 (𝐷𝑐𝑁)𝑘𝑗 =

{
 
 
 
 

 
 
 
     

(−1)𝑘+𝑗

𝑥𝑘−𝑥𝑗

𝑎𝑘

𝑎𝑗
,                                    𝑘 ≠ 𝑗              

−𝑥𝑘

2(1−𝑥𝑘
2)
,                    1 ≦ 𝑘 = 𝑗 ≦ 𝑁 − 1

2𝑁2+6

6
,                                      𝑘 = 𝑗 = 0

−
2𝑁2+6

6
,                                      𝑘 = 𝑗 = 𝑁`   

, 

  
  

 𝑤ℎ𝑒𝑟𝑒:    𝑎𝑗 = {
2,         𝑗 = 0,𝑁   

1,        1 ≦ 𝑗 < 𝑁
       𝑎𝑛𝑑      𝑎𝑗 = cos(𝑗𝜋 𝑁⁄ ) 

 

The 2𝑛𝑑 order Chebyshev differentiation matrix can be obtained by simple matrix operation 

 

 𝐷𝑐𝑁
(2)
= (𝐷𝑐𝑁

(1)
)
2
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It is important to mention that this integer 𝑁  has not the same restriction as it has in 

interpolation Fourier, it can be even or odd.  The matrix 𝐷𝑐𝑁 of order 𝑁 has a size (𝑁 + 1) 
x (𝑁 − 1).  
 

 In this report both 𝐷𝑓 and 𝐷𝑐 are linear operators, they are used in the discretization 

of eq (7) and (8) as follows: 

 
𝜕𝜔

𝜕𝑡
= 𝐷𝑓𝑁

(1)(𝜓𝑖)𝐷𝑐𝑁
(1)(𝜔𝑖) − 𝐷𝑐𝑁

(1)(𝜓𝑖)𝐷𝑓𝑁
(1)(𝜔𝑖) + 𝑣𝐿𝑁(𝜔𝑖)    (14) 

 

𝜔𝑖+1 = −𝐿𝑁(𝜓𝑖)    (15) 
 

Where 𝐿𝑁 is the Laplacian operator. As mentioned before, those differentiation matrices are linear 

operators and in order to convert those to become a bilinear operators, which is the case of the 

Laplacian operator, the tensor product is requested setting a grid base on Chebyshev and Fourier 

points independently in each direction. However, this can be a wasteful process and among the 

various technics to reduce the waste, the tensor product in linear algebra, known as Kronecker 

product is used. 

 

To explain the main idea of the technic, lets consider matrices 𝐴 and 𝐵 with dimensions 𝑚 × 𝑛 and 

𝑝 × 𝑞 respectively, the Kronecker product of those two matrices is represented by 𝐴⊗ 𝐵 this new 

matrix of dimensions 𝑚𝑝 × 𝑛𝑞 with 𝑚 × 𝑛 block form. Now, with tensor product spectral grid, it 

is possible to discretize the Laplacian operator 𝐿𝑁 as: 

 

𝐿𝑁 = 𝐼 ⊗ 𝐷𝑐𝑁
(2) + 𝐷𝑓𝑁

(2)⊗ 𝐼    (16) 
 

Where 𝐼 is the identity matrix, used reorder the terms. 

 

The 𝐿𝑁 is not a sparse matrix, as the ones usually obtained in finite differences or finite elements. 

Even with a computational cost, the high accuracy of spectral methods make worth using this 

technic to construct our operator.  

 

For stability and convergence of the solution, it is requested to handle with the CFL condition for 

the concentration of oxygen calculation in finite differences form, the unequal spacing grid in both 

𝑥 and 𝑦 direction and the method of lines conditions for solving the time stepping.  The basic idea 

of method of lines is solving coupled systems of ODEs in a finite differences form, with the rule of 

thumb   as a criterion for stability.  

 

Initially it was used an Euler discretization in time, but the computational time was decreasing the 

efficiency of the spectral method. We decided to work with the largest time step as possible without 

compromising the stability and convergence of the solution. Therefore, the Adams-Bashforth 

discretization is chosen for time stepping due to its large area of convergence and make possible to 

find an intersection point between all the requirements.  

  

 

 

3.3    Flow Boundaries 

 
As sketched in Figure 1, inflow boundary conditions were used on the west side and Neumann 

boundary condition on east side. For both north and south boundaries Dirichlet boundary conditions 

were used with the appropriate formulation for vorticity streamfunction formulation. In each time 
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step, the boundary conditions are calculated and updated in the Laplacian operator. As the Fourier-

Chebyshev spectral grid is limited from [−1,1] in 𝑦 and periodic in 𝑥, boundaries were imposed in 

the correspondent index of the vorticiy 𝜔. The staggered grid works with boundary conditions in a 

manner that some values are computed inside the cell. Therefore, similarly to Finite Volumes the 

boundary conditions are imposed with a help of the same concept of  “Ghost Cell “. 

 

 

 

3.4    RBC Membrane and Oxygen Diffusion 

 

The level set method as developed by Tekleab [3] is used to model the RBC deformation, with a 

slight modification due to the Fourier-Chebyshev pseudospectral staggered scheme with different 

grid space in both directions and with cluster points in the north and south capillary walls. The 

major modification was in the jump matrix that corrects the velocity and pressure after the influence 

of the RBC membrane on the blood plasma flow.  

  

Based on [7] the stiffness index (𝑗) for sickle cell used is in the range 0 ≤ 𝑗 ≤ 2. Now, the relation 

between the RBC membrane deformation and the concentration of oxygen has a range of values for 

analysis based on the proposed Berger and King relation [7] between those: 

  

 
𝑘𝑅𝐵𝐶

(𝑘𝑅𝐵𝐶)0
= (

𝑐

𝑐0
)
−𝑗

= (
𝑝𝑜2

(𝑝𝑜2)0
)
−𝑗

 

  

Where (𝑘𝑅𝐵𝐶)0 represents the stiffness of a normal cell; 𝑐0 and (𝑝𝑜2)0 are the oxygen 

 

concentration and oxygen partial pressure for a fully oxygenated cell at the arterial end of the 

capillary. 

  

 

The Frick’s Law of mass diffusion represented by eq (3) can be written in the computational 

domain as the following: 

 

 
𝐶𝑛+1−𝐶𝑁

∆𝑡
+ 𝑈𝑛𝐶𝑥

𝑛 + 𝑉𝑛𝐶𝑥
𝑛 − 𝐷𝑜𝑥(𝐶𝑥𝑥

𝑛 + 𝐶𝑦𝑦
𝑛 ) = 𝑅(𝐶𝑛) 

 

Where 𝑅 is the rate of hemoglobin 𝑂2 production and myoglobin 𝑂2 absorption and the relation 

between the myoglobin (𝑆𝑀𝑏) and hemoglobin (𝑆𝐻𝑏) saturation is computationally discretized as 

following: 

  

𝑅𝑛 = 𝑘−1
𝐻𝑏[𝐻𝑏] (𝑆𝐻𝑏

𝑛
− (1 − 𝑆𝐻𝑏

𝑛
) (

𝐶𝑛

𝐶50%
𝐻𝑏 )

𝑛

)     + 𝑘−1
𝑀𝑏[𝑀𝑏] (𝑆𝑀𝑏

𝑛
− (1 −

𝑆𝑀𝑏
𝑛
) (

𝐶𝑛

𝐶50%
𝑀𝑏 )

𝑛

) + 𝑀 

  

 Where 𝑀 is the tissue 𝑂2 consumption rate. 
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4     Results and Comparison 
 
Our pseudospectral microcirculation numerical code was implemented to compare two basic cases 

with the already existed results for normal and sickle microcirculation. For distinguish one for the 

other, physiological parameters such as Hill coefficient, oxygen partial pressure at 50% hemoglobin 

saturation, arterial oxygen partial pressure and stiffness index are listed in the table bellow: 

 

 

 

 Table 1 – Microcirculation Cases Parameters 

  

 Parameters  Normal 

Microcirculation 

 Sickle 

Microcirculation 

  

 Hill coefficient (𝑛) 
  

  

 2.7 

  

 3.0 
  

  

 𝑝𝑂2 At 50% Hb  

saturation (𝑝𝑂2,50%
𝐻𝑏 ) 

  

 3.33 × 103𝑃𝑎  
  (25 𝑚𝑚𝐻𝑔) 

 5.33 × 103𝑃𝑎  
(40 𝑚𝑚𝐻𝑔) 

  

  

 𝑝𝑂2 In arteries 

(𝑝𝑂2,50%
𝑎𝑟𝑡𝑒𝑟𝑖𝑎𝑙) 

  

 1.27 × 103𝑃𝑎  
   (95 𝑚𝑚𝐻𝑔) 

 1.07 × 103𝑃𝑎  
(80 𝑚𝑚𝐻𝑔) 

  

 Stiffness index (𝑗)  0.0  0 ≤ 𝑗 ≤ 2 

 

 

 

 Here follows a sequence of comparison between the results of a full finite differences scheme 

and a mixed pseudospectral-finite difference method [Bueno-Harris].  

  

  

 In the following Figure 2 the profiles are presented in three of five periods of the process. 

Initial time condition is a constant concentration of oxygen based on capillary conditions for a sickle 

and normal cell. The second case of each profile set shows a middle path situation and the last case is 

the final RBC membrane deformation and oxygen concentration profile at the end of the capillary.  
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 This first group of cases covers the analysis of the oxygen concentration profile from the 

RBC membrane, through the blood plasma and into the surrounding tissue. The capillary is 

represented for a tube of 10 units of measure of length and 4 units of width representing the 

surrounding tissue.  

 

The consistency of Bueno-Harris model with the Harris-Tekleab results is noted. The initial elliptic 

RBC shape and its membrane deformation in a “bullet” shape coupled with the variation in the 

oxygen profile concentration were expected. Also, the non-intuitive scenario, of higher values of 

oxygen near the cell as time elapse, can be highlighted. This is a straightforward result of a correct 

development of the blood plasma flow in pseudospectral method and an appropriate connection 

between the myoglobin, hemoglobin and oxygen concentration implementation. 

 

The cases 1, 4 and 7 for both models are exactly the same due to the constant initial concentration of 

oxygen for normal and sickle microcirculation condition. In the cases 2, 3, 5, 6, 8 and 9 it is possible 

to see a slightly different oxygen concentration drop (less significant) in Bueno-Harris model, mainly 

in the boundaries. However, there is similarity with the Tekleab-Harris model with respect to the 

oxygen concentration profile, RBC membrane deformation and the values of the oxygen 

concentration.  

 

In this case 9 is noted that not only a stretched RBC shape in Teakleab-Harris profile, but also a 

stretch oxygen profile in the Bueno-Harris results. This can be explained by the north and south 

clustered Chebyshev collocation and west and east periodicity of the Fourier-spectral scheme. 

 

 

An other test case to validate the physics of the problem is the capture of weak vortices. These 

perturbations happen due to the jump pressure across the membrane of the RBC, where the V velocity 

Figure 2: Oxygen Profile Comparison 
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profile depicts those small eddies. As the jump pressure formulation depends on the stress on the RBC 

membrane, which is assumed a linear relation with curvature as follows: 

 

𝜎 =  𝐾𝑅𝐵𝐶𝑘    (17) 
 

where the curvature 𝑘 is given by : 

 

𝑘 =  
𝜙𝑥𝑥𝜙𝑦

2 − 2𝜙𝑥𝜙𝑦𝜙𝑥𝑦 + 𝜙𝑦𝑦𝜙𝑥
2

(𝜙𝑥2 + 𝜙𝑥𝑦2)
2
3

    (18) 

 

where 𝜙(𝑥, 𝑦) is a function that defines the boundary between the membrane and the plasma.  

 

Therefore, the greatter effects of this phenomenon are presents at the ends of the RBC as shown in 

figure 3. 

 

 

 
 

 

 

 

 

Those small eddies, which are reflected in the V velocity, are also the result of the RBC inside the 

simple Poiseuille flow that would have a V velocity component equals to zero in anywhere. 

 

 

 

5     Conclusion and Future Work 
 
The pseudospectral scheme to mathematically simulate the blood plasma flow appears to be a 

promising feature to be used. An appropriate change in the oxygen concentration profile for each 

microcirculation scenario corresponds to our expectation. Also, the non-intuitive higher oxygen 

concentration values in the tissue and roughly in whole plasma for a normal cell when compared to a  

sickle one. Computationally speaking, due to the tensor product, this model has a higher 

computational cost, but due to the spectral accuracy, it exceeds the finite differences scheme in this 

sense, since the profiles converge exponentially.  

 

However, there are some limitations that is not related to the accuracy of the method, for this reason, 

other implementation of this model should be considered in a future work. In order to reach a better 

mathematical model of this microcirculation problem, the discrete Navier-Stokes equation should be 

in a cylindrical form. Another interesting implementation is to simulate the RBC membrane 

Figure 3: V velocity profile and small eddies. 
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deformation with Immersed Boundary Method, instead level set method. In this case, equation (2) has 

a force term that automatically carries the influence of the RBC shape modification into the velocity, 

and pressure, avoiding the approximation of the jump condition at RBC for correction of pressure and 

velocity, saving computational time and reducing cost. Moreover, the pseudospectral implementation 

of equation (3) will allow a better compatibility between the blood plasma flow, membrane 

deformation and oxygen concentration. 

 

 

 

 
 

 

 

. 

 

For a better representation of this specific problem, the Figure 3 depicts an initial bi-concave RBC 

geometry into the blood plasma flow, which can guarantee results closer to those obtained for Le-

Floch-Yin [2] in his three dimensional model. Additional research is required to find a different stress 

function, which should not be direct proportional to the curvature of the RBC as it is for an elliptical 

initial geometry. On the other hand, it is a fact that this improvement would maximize the overall 

stress on the cell membrane creating results that can compare with a two-dimensional moving mesh 

model. 

 

These improvements to the Bueno-Harris model would allow an accurate and low cost code to be 

used in a preliminary study of the sickle cell disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Bi-concave RBC Initial geometry in a capillary 
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