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Abstract: The present paper proposes a numerical approach to simulate the motion of rigid
particles in an incomprssible �uid. The rigid motion is enforced by penalizing the strain tensor on
the rigid domain. The method is based on a variational formulation on the whole domain (�uid
and solid). We implemented this method and we simulated several test cases. Finaly to validate
this approach, we apply this method to simulate the case of a particle which is subjected to shear
�elds.
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1 Introduction

Theoretical approaches aiming at describing the behavior of suspensions of rigid or deformable particles have
been limited for a long time to dilute suspensions. This approach has begun with the seminal work of Ein-
stein [1, 2] in 1906 and 1911 on the e�ective viscosity of a dilute suspension of rigid spheres and, since then,
it has been completed by numerous works [3, 4, 5, 6, 7, 8] related to the framework of dilute suspensions.
From the prediction point of view, most of these works deal with weak solid concentrations and small solid
sizes in which pairwise interactions lead to the behavior of the suspensions.

When dealing with a big rigid particles, a new approach is required. Several strategies have been proposed
in the last two decades to simulate the motion of rigid bodies in a viscous �uid. A �rst class of methods
relies on methods with a mesh in the �uid domain, by computing the �ow in the �uid domain (which is
complex because of the inclusions). Then, it is possible to compute the forces exerted on the particles and,
as a consequence, the velocity perturbations. This methods are relies on a moving mesh following the �uid
domain [9, 10, 11, 12]. The second class is the �ctitious domain methods also called domain embedding
methods: the idea is to extend a problem de�ned on a time-dependent, complex domain (the �uid domain)
to a larger one (�xed) called the �ctitious domain [13, 14]. Penalty methods are another class of �ctitious
domain strategies [15].

The penalty method is based on a reformulation of the stress tensor for canceling the deformation rate in
the volume occupied by the particle. It consists on constraining the movement of the �uid to be a rigid body
motion identical to that of a particle by locally increasing the viscosity of the �uid [16, 17, 18]. Recently this
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method has been extended to manage of stress rigid motion for a particle in a �uid to an approach of �nite
di�erence type and then by a �nite elements method. [19, 20]. This method is implemented on a general
Finite Element solver which we use to make numerical tests.

In this paper we present a method of simulating the movement of one or more convex rigid body in
a Newtonian incompressible �uid. We used a penalty method which is based on a reformulation of the
stress tensor which allows the canceling of the deformation rate in the volume occupied by the particle.
The objective is to develop a code from FreeFem ++ that simulates Stokes or Navier-Stokes �ows (with
low Reynolds number) in the presence of solid particles. To validate this method, we apply this method to
simulate the case of a particle which is subjected to shear �elds.

2 Modelling rigid body �ows

We consider a connected, bounded and regular domain Ω ⊂ R2 (see Fig.1) and we denote by (Bi)i=1,··· ,N
the rigid particles, strongly included in Ω. B denotes the whole rigid domain: B = ∪iBi. The domain Ω \B
is �lled with Newtonian �uid governed by the Navier-Stokes equations. We note µ the viscosity of the �uid,
p the presure and ff the external forces exerted on it. Since we consider a Newtonian �uid, the stress tensor
σ is given by the following relation (see Eq. (1)):

σ = 2µD(u)− pI, where D(u) =
∇(u) + (∇(u))T

2
(1)

Figure 1: Partcicles Bi in a Newtonian �uid.

We consider homogeneous Dirichlet conditions on ∂Ω. The presence of viscosity imposes a no-slip condi-
tion on the boundary ∂B of the rigid domain.
At the initial time the particles with density ρi are distributed randomly over the �uid. The position of the
center of the ith particle is denoted by xi, by vi and ωi its translational and angular velocities. We denote
by mi and Ji the mass and the kinematic momentum about its center of mass:

mi =

∫
Bi

ρi, Ji =

∫
Bi

ρi‖x− xi‖2 (2)

We have to �nd the velocity u(u1, u2) and the pressure �eld p de�ned in Ω \ B, as well as the velocities of
the particlesV := (vi=1,...,N) ∈ R2N and ω := (ωi=1,...,N) ∈ RN such that (see Eq. (3)):
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ρf(
∂u
∂t + u.∇u)− div(σ) = ff in Ω \B,

div(u) = 0 in Ω \B,

u = 0 on ∂Ω,

u = vi + ωi(x− xi)⊥ on ∂B, ∀i ∈ {1,··· , N}

(3)

where ρf denotes the density of the �uid and ff = ρfgey is the external force exerted on the �uid (gravity
forces). The �uid exerts hydrodynamic forces on the particles. Newton's second law for these particles is
written then as follows (see Eq. (4)):

mi
dVi

dt =
∫
Bi

fi −
∫
∂Bi

σn,

Ji
dωi

dt =
∫
Bi

(x− xi)⊥.fi −
∫
∂Bi

(x− xi)⊥.σn,
(4)

Where, fi denotes the external non-hydrodynamical forces exerted on the sphere, such as gravity : fi =
−ρigey.

2.1 Variational Formulation

The functionnal spaces are de�ned as:

L2(Ω) =

{
f : Ω −→ R;

∫
Ω

|f |2 < +∞
}

(5)

L2
0(Ω) =

{
f ∈ L2(Ω);

∫
Ω

f = 0

}
(6)

H1(Ω) =
{
f ∈ L2(Ω);∇f ∈ L2(Ω)

}
(7)

H1
0 (Ω) =

{
f ∈ H1(Ω); f = 0 on ∂Ω

}
(8)

K∇ =
{
u ∈ H1

0 (Ω) ,∇.u = 0.
}

: divergence space (9)

KB =
{
u ∈ H1

0 ,∀i,∃(vi, ωi) ∈ R2 × R;u = vi(t) + ωi (x− xi)⊥ in B.
}

=
{
u ∈ H1

0 , D(u) = 0 in B
}

: rigid mouvement space.

(10)

K∇ is the space of divergence free functions on Ω and KB is the space of functions on that do not deform
B. The variational formulation obtained on the whole �uid/particle domain Ω is given here after (see Eq.
(11)): 

Find (u, p) ∈ KB × L2
0(Ω) suchthat∫

Ω
ρ̃Du

Dt v + 2µ
∫

Ω
D(u) : D(v)−

∫
Ω
pdiv(v) =

∫
Ω

f̃.v, ∀v ∈ KB∫
Ω
qdiv(u) = 0, ∀q ∈ L2

0,

(11)

with ρ̃ := ρf1Ω\B +
∑N

i=1 ρf1Bi , f̃ := ff1Ω\B +
∑N

i=1 fi1Bi andKB = {u ∈ H1
0 (Ω)D(u) = 0 inB}.
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2.2 Method of Characteristics

The time discretization is performed using the method of characteristics [21]. We obtain the following
discretized scheme: for each n > 1:

1

∆t

∫
Ω

ρn+1un+1 (x)u dΩ + 2µ

∫
Ω

D
(
un+1

)
: D (u) dΩ−

∫
Ω

pn+1 div (u) dΩ

=
1

∆t

∫
Ω

(
ρn+1un

)
o (Xn (x))u dΩ +

∫
Ω

fn+1 u dΩ, ∀ u ∈ KBn+1

∫
Ω

q div
(
un+1

)
= 0 ∀q ∈ L2 (Ω)

(12)

2.3 Penalisation Method

This method is presented in [19, 22] and consists in considering the minimization problem over a constrained
domain associated to eqution (12) and relaxing the constraint by introducing a penalty term in the mini-
mized functional. The added term is the following:

1

ε
=

∫
Bn+1

D
(
un+1

)
: D
(
un+1

)
,

so that D
(
un+1

)
|Bn+1→ 0 goes to zero when ε = 0 goes to zero and un+1 tends to be a rigid motion

in Bn+1. Finally, there are the conditions of the rigid movement and adapted the variational formulation is
obtained at the following discretization �nite elements:



Find un+1 ∈ H1
0 (Ω) pn+1 ∈ L2(Ω) such that,

1

∆t

∫
Ω

ρn+1un+1.u dΩ + 2µ

∫
Ω

D
(
un+1

)
: D (u) dΩ

+
2

ε

∫
Bn+1

D
(
un+1

)
: D (u) dΩ−

∫
Ω

pn+1 div (u) dΩ

=
1

∆t

∫
Ω

(ρnun) o (Xn.u) dΩ +

∫
Ω

fn u dΩ, ∀ u ∈ H1
0 (Ω)

∫
Ω

q div
(
un+1

)
= 0, ∀q ∈ L2 (Ω)

(13)

3 Sheared particle

We consider the instantaneous problem of a particle in a Newtonnain �uid. The computational domain is
a square 1cm wide and a particle of radius 0.1cm is situated at its center . The right and left walls of the
domain impose a shearing motion to the system, the viscosity of the �uid is equal to 1 . A cartesian meshes
are used (see Fig. 2).
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a) b)

Figure 2: Sheared particle: left: physical domain; right: cartesian meshes

rp ω rp ω
0.6 0.1804 0.0039 0.452976
0.45 0.249947 0.00385 0.47697
0.25 0.249492 0.00383 0.487011
0.17 0.249895 0.00381 0.497318
0.15 0.249977 0.003801 0.499937
0.1 0.251729 0.0038049 0.499989
0.01 0.356297 0.00380489 0.499995

Table 1: Angular vilocity of a sheared particle

On the table (1) below we have presented the angular velocity a function of the particle radius. We show
that the angular velocity of the particule converges to the theoretical value and is equal to 0.5 [23].

ω =
γ̇

2
=

2U

2L

The streamlines and the velocity �eld of the shear movement are respectively shown in �gure 3. This
�gure show the streamlines of the rotational motion.
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a) b)

Figure 3: Sheared particle: a) Stream line; b)Vilocity �eld

4 Conclusion

In this paper, we have proposed a strategy for the numerical modeling of the motion of a rigid particle in
a Newtonian �uid. The rigid motion is imposed by penalizing the strain tensor, the time discretization is
performed by using the method of characteristics.
The code was written in FreeFem++ version 3.26 and at each time step the generalized Navier-Stokes prob-
lem is solved by using standard �nite elements. From the results of this case, we notice that the stress of
rigid motion is taken into account. These results are similar to those existing in the literature especially
those obtained by Lefebvre [20].
We veri�ed that when the radius of the particle tends to zero we �nd the theoretical value of the angular

velocity which converges to the theoretical value of the angular velocity
γ̇

2
=

2U

2L
.

6



References

[1] Albert Einstein. Eine neue bestimmung der moleküldimensionen. Annalen der Physik, 324(2):289�306,
1906.

[2] Albert Einstein. Berichtigung zu meiner arbeit:�eine neue bestimmung der moleküldimensionen�. An-
nalen der Physik, 339(3):591�592, 1911.

[3] GK Batchelor. Transport properties of two-phase materials with random structure. Annual Review of
Fluid Mechanics, 6(1):227�255, 1974.

[4] GK Batchelor. Developments in microhydrodynamics. In Theoretical and Applied Mechanics Congress,
volume 1, pages 33�55, 1977.

[5] Howard Brenner. Rheology of a dilute suspension of axisymmetric brownian particles. International
journal of multiphase �ow, 1(2):195�341, 1974.

[6] Duncan James Je�rey and Andreas Acrivos. The rheological properties of suspensions of rigid particles.
AIChE Journal, 22(3):417�432, 1976.

[7] WB Russel. Review of the role of colloidal forces in the rheology of suspensions. Journal of Rheology
(1978-present), 24(3):287�317, 1980.

[8] Robert H Davis and Andreas Acrivos. Sedimentation of noncolloidal particles at low reynolds numbers.
Annual Review of Fluid Mechanics, 17(1):91�118, 1985.

[9] Howard H Hu, Daniel D Joseph, and Marcel J Crochet. Direct simulation of �uid particle motions.
Theoretical and Computational Fluid Dynamics, 3(5):285�306, 1992.

[10] Howard H Hu. Direct simulation of �ows of solid-liquid mixtures. International Journal of Multiphase
Flow, 22(2):335�352, 1996.

[11] Andrew A Johnson and Tayfun E Tezduyar. Simulation of multiple spheres falling in a liquid-�lled
tube. Computer Methods in Applied Mechanics and Engineering, 134(3):351�373, 1996.

[12] B Maury. Direct simulations of 2d �uid-particle �ows in biperiodic domains. Journal of computational
physics, 156(2):325�351, 1999.

[13] R Glowinski, TW Pan, TI Hesla, DD Joseph, and J Periaux. A �ctitious domain approach to the direct
numerical simulation of incompressible viscous �ow past moving rigid bodies: application to particulate
�ow. Journal of Computational Physics, 169(2):363�426, 2001.

[14] Neelesh A Patankar, Pushpendra Singh, Daniel D Joseph, Roland Glowinski, and T-W Pan. A new
formulation of the distributed lagrange multiplier/�ctitious domain method for particulate �ows. In-
ternational Journal of Multiphase Flow, 26(9):1509�1524, 2000.

[15] Philippe Angot, Charles-Henri Bruneau, and Pierre Fabrie. A penalization method to take into account
obstacles in incompressible viscous �ows. Numerische Mathematik, 81(4):497�520, 1999.

[16] J Caltagirone and S Vincent. Tensorial penalisation method for solving navier-stokes equations. Comptes
Rendus de l'Academie des Sciences Series IIB Mechanics, 329(8):607�613, 2001.

[17] Stéphane Vincent, Jorge César Brändle De Motta, Arthur Sarthou, Jean-Luc Estivalezes, Olivier Si-
monin, and Eric Climent. A lagrangian vof tensorial penalty method for the dns of resolved particle-laden
�ows. Journal of Computational Physics, 256:582�614, 2014.

[18] Stéphane Vincent, Tseheno Nirina Randrianarivelo, Grégoire Pianet, and Jean-Paul Caltagirone. Local
penalty methods for �ows interacting with moving solids at high reynolds numbers. Computers & �uids,
36(5):902�913, 2007.

[19] Joao Janela, Aline Lefebvre, and Bertrand Maury. A penalty method for the simulation of �uid-rigid
body interaction. In ESAIM: Proceedings, volume 14, pages 115�123. EDP Sciences, 2005.

[20] Aline Lefebvre. Fluid-particle simulations with freefem++. In ESAIM: Proceedings, volume 18, pages
120�132. EDP Sciences, 2007.

[21] Olivier Pironneau, J Liou, and T Tezduyar. Characteristic-galerkin and galerkin/least-squares space-
time formulations for the advection-di�usion equation with time-dependent domains. Computer Methods
in Applied Mechanics and Engineering, 100(1):117�141, 1992.

[22] Salah ZOUAOUI. Modélisation et Simulation des Ecoulements Multiphasiques basées sur une Approche
Multi-Echelles. �Application au Transport Solide�. PhD thesis, Université Mouloud Mammeri de Tizi-
Ouzou, 2016.

[23] GK Batchelor and J-T_ Green. The hydrodynamic interaction of two small freely-moving spheres in a
linear �ow �eld. Journal of Fluid Mechanics, 56(02):375�400, 1972.

7


