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Abstract: Modelling of the expansion of 3-D single bubble using a multi-phase 

model has been developed for GIVE APPLICATION AREA with the potential of a 

meshless numerical simulation method, Smoothed Particle Hydrodynamics (SPH), 

and the consideration of the surface tension between phases and viscosity effect of 

the polymer melt surrounding the bubble. Mainly, bubble growth in the polymer 

material occurs because of the mass conversion (mass loss) from the polymer melt 

to gas due to heat such as fire. This mass conversion drives the expansion process 

of the gas bubble by increasing the pressure inside. To represent the mass transfer 

the from the polymer melt to the bubble, this paper proposes a novel algorithm to 

increase number of SPH gas particles inside the bubble during the simulation. The 

present paper aims to explain this new developed method including particle shifting 

scheme identifying the main challenges of dynamic and non-spherical bubble 

modelling which have a nonlinear multi-phase behaviour. In order to develop 

stable simulations for the multi-phase bubble growth in isothermal conditions in 

millimeter scale, surface tension effects have been scaled according to the 

Capillary number. The insertion of the new gas particles into the bubble centre has 

been performed at regular intervals to identify the influence of time period of 

particle insertion. The predicted results from the numerical study have been 

compared with the well-known analytical solution for single bubble growth for 

final bubble radius and bubble growth rate. Time step analysis has also been 

performed to show the numerical stability for this kind of bubble growth 

simulation. The importance of the particle shifting scheme has also been addressed 

for simulating bubble growth in this multi-phase problem. 
 

Keywords:    Bubble growth, Smoothed Particle Hydrodynamics (SPH), Multi-phase, 

Surface tension, Viscosity. 

 

 

1 Introduction 
 
The foaming of a polymer melt is an important issue for applications such as insulation, personal care 

and fire retardation. The main feature, which has an effect on the quality of the thermoplastic foam 

product, is the cell size distribution (CSD). Many factors influence the final CSD of a foam, including 

bubble nucleation, growth, deformation, possible coalescence and bursting, while each of these 

depends on many sub-factors such as temperature, pressure, blowing agent and the use of nucleating 

agents [1] .  
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The foaming process, dominated by the dynamics of the gas-liquid interface and using physical 

blowing agents, is a complex process which consists of three main stages. The first is “nucleation”, 

where the gas in the gas-liquid mixture diffuses into gas clumps and begins to form bubbles. The 

second is essentially “bubble growth”, where bubbles grow due to a gas source from the liquid or 

smaller neighboring bubbles. The third step is “coarsening”, where the bubbles come together and 

combine into larger bubbles [2]. Although numerous works have been conducted on the theoretical 

study of bubble growth including experiments, only a limited number of studies have reported the 

issue of the dynamic behavior of bubble growth in the molten polymer. It is mentioned in the work of 

Tuladhar and Mackley [3] that the classical and well-known theory of nucleation is based on Gibbs 

free energy, which is appropriate for creating a void in a liquid and assumes that the critical bubble is 

in equilibrium in terms of mechanical and thermodynamic properties. In their model, bubbles larger 

than the critical bubble size keep growing while smaller ones dissolve. As the bubble growth is 

mainly related to the pressure, the growth does not continue infinitely because the concentration of the 

dissolved gas 𝑐𝑟(𝑡) in the surrounding polymer melt also reduces with respect to time. Hence, the rate 

of bubble growth is a function of the polymer viscosity, diffusivity of the gas (mass conversion from 

liquid to gas) and pressure inside the bubble. In reality and for any numerical model for multi-bubble 

growth, expanded bubbles that are in close proximity to another bubble or bubbles cannot grow 

infinitely, since only a finite supply of gas is available for the growth [4]. The prediction of the 

nucleation process is therefore difficult, but if it occurs, bubble growth is controlled by the 

fundamental laws where the pressure of the gas within the bubble provides a driving force to expand 

the bubble whereas the viscosity of the polymer and surface tension of the bubble wall provide 

opposing forces (resistance) to bubble growth. This physical phenomenon of bubble growth in 

Newtonian fluids is based on the simultaneous mass and momentum transfer. The schematic of a 

single bubble can be shown in Figure 1. 

 

 
 

Figure 1: Schematic diagram of a single bubble growth model [3] 

With many variables influencing the bubble modelling simultaneously, sensitivity studies for the 

parametric values should be conducted [3]. For instance, some of those parameters are initial bubble 

radius, influence cell radius, melt viscosity, diffusion coefficient, initial gas concentration, etc. Initial 

bubble size is directly related to the surface tension, so as the bubble size increases, the importance of 

the surface tension decreases. The important parameters for the bubble growth in the polymer melt are 

the viscosity, surface tension and the pressure increase inside the bubble, and they can be modelled 

using other computational approaches. With the aim of understanding the mechanisms, grid-based 

numerical methods for computational fluid dynamics have been used for modelling this kind of multi-

phase problem including simulating the motion of a single bubble rise in a liquid using Front Tracking 

Method [5], modelling a single droplet’s drop on to a liquid interface using the Level Set Method [6], 
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numerical predictions for 2-D bubble collapse within a viscous fluid surrounded by a rigid boundary 

using Marker Particle Method [7], simulating single condensing bubble behavior in a cooled flow 

using Volume-of-Fluid Method [8] and development of 3-D multiple bubble rising under buoyancy 

force considering bubble-bubble interaction in a viscous incompressible fluid using the Lattice 

Boltzmann Method [9]. These approaches can be broadly classified as Eulerian, involving variation of 

flow quantities at fixed points in space, and Lagrangian where the flow properties can move in space 

and time. [10]. For changing grid methods such as the finite element method (FEM), mesh generation 

is also necessary to simulate the flow, because mass, momentum and energy are transported with the 

movement of mesh cells. However, it can be time consuming when the objects have large 

deformations and distortions. It may even introduce inaccurate results [11]. Points in the mesh or grid 

need to be destroyed in a case where significant deformation appears or sharp changes of geometry 

occur, such as in a violent fluid flow. Therefore, these grids need to be remeshed or refined for these 

kinds of problem, which leads to a computationally expensive process. 

 

The Smoothed Particle Hydrodynamics (SPH) method is foreseen as being able to capture these 

nonlinear phenomena. As a meshless method, SPH method obtains approximate numerical solutions 

to the set of equations representing the dynamics by replacing the medium with a set of particles. The 

particles are free to move according to the governing dynamics and interact with each other by means 

of overlapping influence areas known as smoothing kernels or weighting functions. These kernels 

have a characteristic spatial distance, generally known as the “smoothing length”, which is 

represented by “h”. The physical property of any particle can be estimated by summing weighted 

contributions of all the surrounding particles that are located within the radius of influence (support) 

of the kernel. The advantages of this method compared with other computational methods are due to:   

(i) No mesh or potentially expensive grid is required to compute spatial derivatives because of its 

meshless nature. 

(ii) The conservation of mass without extra computational process is exact since the mass of each 

particle remains constant. 

(iii) An important advantage directly relevant to this study is that it is possible to deal with 

interface problems, since each material is described by its own set of particles. 

This meshless method was initially developed for solving astrophysical problems [12, 13]. It is still in 

use for simulations of star formation [14] and coalescence of black holes [15]. In the past two 

decades, the method has been used extensively to tackle fluid dynamics problems, especially free-

surface flows [16], [17], [18] as well as solid dynamics problems [19], and brittle solids [20]. The 

range of applications of SPH is very broad and varied, encompassing areas such as solid and fluid 

mechanics, heat conduction [21], fracture mechanics [19], fluid-solid modelling [22], modelling of 

water waves, sloshing, etc. [23]. Multi-phase models such as those encountered here, and will be 

discussed in Section 2.2, have also been developed with the aid of the meshless nature of the SPH 

method [24]. 

 

There is currently no established model for the simulation of bubble growth in a liquid by SPH and 

this work aims to fill this knowledge gap. In this work, the main interest lies in the modelling of a gas 

bubble in the surrounding fluid. Therefore, the model is considered as multi-phase modelling. A 

model of this kind of multi-phase flow is quite complex and includes an interface between the air and 

fluid phase with numerous discontinuities and stability problems. Moreover, different models (i.e. 

surface tension, no-penetration force), correction methods (e.g. shifting method) and the new particle 

generation method have been added to develop a robust modelling scheme and to improve the 

accuracy of the modelling. 

 

This paper describes the physics behind gas bubble growth process with its significant challenges that 

should be overcome to make SPH a feasible method. The results obtained from the SPH simulations 

are compared with the analytical solution for single bubble growth developed by Patel [25] in terms of 

final bubble radius and bubble growth rate. Moreover, a novel algorithm to represent the mass transfer 

for the bubble growth including the particle shifting methodology is represented herein. 
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2 Bubble Expansion Modelling Methods 
 
The problem of bubble nucleation and growth inside foams plays an important role in the chemical 

industry. The well-known single bubble growth model is of Patel [25]. The numerical results from 

SPH will be compared with those results obtained from analytical method. 

 

2.1 Governing Bubble Growth Equation 
 
Patel [25] developed an analytical bubble growth model in a viscous fluid by considering the 

diffusion from the polymer liquid to the gas phase. The assumptions in that model were: 

 The system is isothermal and a thermodynamic equilibrium exists continuously between the 

gas pressure inside the bubble and polymer-gas solution at the interface.  

 All physical properties of the liquid and gas are constant. This assumption is also applicable 

for SPH bubble growth modelling except that the density changes according to the 

conservation of mass. 

 The normal stresses at the interface are the surface tension and viscosity, neglecting the 

inertial terms.  

 The rate of the bubble’s growth is related to the pressure increase inside the bubble, whereas 

ambient pressure 𝑃𝑎 is assumed to be constant,  

 

𝑑𝑅

𝑑𝑡
= 𝑅 (

𝑃𝑔 − 𝑃𝑎 − 2𝜎𝑠/𝑅

𝜂𝑜
) − 3𝑃𝑔 (

𝑹̇

𝑅
) (1) 

where  𝑃𝑔 and  𝑃𝑎 are the gas pressure inside the bubble and the ambient pressure respectively. 𝑅 is 

the radius of the bubble, 𝑹̇ is the bubble growth rate, 𝜎𝑠 is the surface tension coefficient and 𝜂𝑜 is the 

viscosity of the polymer liquid. It is assumed that the initial bubble radius should be greater than the 

critical bubble radius, 𝑅𝑐𝑟, which comes from the Young-Laplace equation, 

 

𝑅𝑐𝑟 =
2𝜎𝑠

𝑃𝑔𝑜
− 𝑃𝑎

 (2) 

As this bubble growth model describes a single bubble growth due to the assumption of unlimited 

supply of blowing agent, it does not consider the influence of surrounding bubbles. Therefore, this 

model over predicts the actual bubble growth in polymer foaming. Another shortcoming of this model 

is that the polymer liquid is assumed to be a Newtonian fluid while the bubble forming in polymer 

foams behaves as a non-Newtonian fluid and the physical properties such as viscosity and surface 

tension change with time. However, this model is still applicable to this kind of modelling of bubbles 

by making necessary changes to the assumptions. 

Figure 2 shows a sketch of the main quantities involved in bubble growth where the radius of the 

bubble is R. The main driving force for bubble growth is the increased gas pressure inside the 

bubbles (𝑃𝑔). The resistance forces, which control the bubble growth process, are due to the viscosity 

(𝜂) and surface tension force  (𝐹𝑠) due to surface tension at the interface. These forces act on the 

interface, which has infinitesimally small thickness, shown in Figure 2 by zooming in to the interface. 
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Figure 2: A sketch of the forces acting on a bubble 

 

 

2.2 Multi-Phase SPH Modelling 
 
As mentioned in the previous section, SPH is a Lagrangian method which enables the simulation of 

multi-phase flows such as explosive multi-phase pipe flow, wave breaking, and air bubble formation 

(gas expansion) in a liquid. It can be a difficult and complex task to apply the Eulerian grid-based 

methods to these kinds of multi-phase flow simulation, as the creation of mesh requires a significant 

amount of time, complex algorithms and high quality computational resources [26]. 

Extensive research methods with the SPH scheme have already been proposed for multi-phase 

modelling, including both liquid-gas and liquid-liquid flows. One of the most attractive features of 

SPH is to include more than one fluid with a separate set of particles in each phase by assigning 

different equations of state [27]. However, the accuracy of the multi-phase modelling results is greatly 

dependent on the ratio of their hydrodynamic properties such as density and viscosity [28], [29]. 

One of the first multi-phase SPH schemes examined the motion of dust and gas by movement of the 

dust into a static gas phase [30]. Shortly after, Monaghan and Kos [16] proposed a multi-phase SPH 

for the interaction of multiple fluids to simulate the gravity current free-surface problems with a ramp. 

The results were satisfactory, with a correction to the velocity keeping the particles more orderly and 

preventing the particle penetration. As the density ratio between the fluids was small, using the 

classical SPH formulation without applying any corrections at the interface could be acceptable. 

However, when simulating large density ratios (e.g. 1:1000), several instability problems in the region 

between the two substances can occur due to the high density gradient at the interface and the 

presence of density in the denominator of SPH summations. Colagrossi and Landrini [24] proposed 

one of the first treatments for this problem by modifying the expressions for SPH gradients.  

A different approach was conducted by Hu and Adams [28], in which the density is only affected by 

the particle’s own volume rather than the volumes of neighboring particles. They also expressed the 

shear stress contribution in terms of the color function (see Section 3.2) such that the surface tension 

term could be evaluated using that color function.  

The previous work was followed by the incompressible model developed by the same authors [31]. A 

constant density approach has been introduced by correcting the density errors at a half-time step to 

simulate the flows with high density ratios (i.e. a density ratio of 100 or more). As this more recent 

incompressible model requires greater computational resources, the method of Hu and Adams [28] 

has been applied directly to surface tension modelling, and the bubble growth test case. 

Grenier et al. [32] proposed a multi-fluid model combining the viscosity and surface tension of Hu 

and Adams [28] based on the specific volume of particle approach with Colagrossi and Landrini [24] 

scheme. The method of Grenier et al. [32] was used to simulate an air bubble rising in water (multi-

phase flow) and also gravity currents (free-surface flows). 
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Similar to that used by Grenier et al. [32], a repulsion term is proposed for the lighter phase where the 

speed of sound is larger than that of the denser fluid (i.e. the ratio of speed of sounds is around 3) to 

simulate the multi-phase simulations [33]. This was later improved by involving the free-surface 

problem with no rigid boundaries being applied to non-linear oscillation of the fluids, the simulation 

of waves at the interface between two fluids, the Rayleigh-Taylor instability test case and simulating 

the gravity currents with density ratios of 2-30 [34]. 

In recent years, SPH has been applied to simulate the phenomena of bubbles rising and multiple 

bubbles coalescing in viscous fluids in 3-D [35]. Although SPH is becoming an increasingly popular 

method for free-surface flows (i.e. single phase flows), it can suffer from non-physical particles 

mixing at the interface of immiscible phases due to the current SPH formulations for multi-phase 

flows. Szewc et al. [36] has also studied the single bubbles rising through viscous fluids by choosing 

the speed of sound carefully to set the incompressibility of the fluid in order to minimize the density 

fluctuations due to the high density ratio between fluids. Similar care has also been taken in the 

simulation of bubble growth in this study. 

 

3 SPH Model – SPHysics 
 

3.1 Governing Equations 
 

SPH modelling of gas bubble growth in a polymer liquid has been implemented using the SPHysics 

FORTRAN open-source code as a platform [37]. The SPH method is expressed by a local 

interpolation for set of particles where the physical properties of the particles such as mass 𝑚𝑖, 

density 𝜌𝑖, pressure 𝑃𝑖, velocity 𝑣𝑖 and volume 𝑉𝑖 are estimated and updated for every time step. 

The formulation of the SPH method is composed of two main steps. The first is the integral 

representation (kernel approximation) of field functions and the second is the particle approximation.  

The discrete or particle representation of an arbitrary function is approximated by summing up the 

function values of the nearest neighbor particles in the interpolation region. 

The integral interpolation of a function A at position r is described as [38]: 

 

𝐴(𝒓) = ∫𝐴(𝒓′)𝑊(𝒓 − 𝒓′, ℎ)𝑑𝒓′ (3) 

where 𝑊(𝒓 − 𝒓′, ℎ) is the smoothing kernel function, 𝒓 − 𝒓′ is the interpolation distance and ℎ is the 

smoothing length. The smoothing length defines the extent of the kernel with the radius of each kernel 

often set to be twice the smoothing length as shown in Figure 3. The particles outside the radius of 

influence have no effect on the influence domain. The region inside the radius of influence is called 

the compact support of the kernel. In SPHysics, a smoothing length of ℎ = 1.3∆𝑥 is used where ∆𝑥 is 

the initial particle distance. This value provides a good correlation between sufficient number of 

particles in the support domain and accuracy.  

A kernel function can be expressed in a general equation as [39]: 

 

𝑊(𝑟𝑖𝑗, ℎ) =
1

ℎ𝑑
𝑓 (
𝑟𝑖𝑗

ℎ
) (4) 

where 𝑑 is the number of dimensions, 𝑟𝑖𝑗 is the interpolation distance between 2 particles 𝑖 and 𝑗, and 

𝑓 is the function. 

For the kernel function, the cubic spline kernel has been chosen in the current developed bubble 

growth model as it has been found computationally efficient with the compact support [40]: 

 

𝑊(𝑟𝑖𝑗, ℎ) = 𝛼𝑑  

{
 
 

 
 

  

1 −
3

2
𝑞2 +

3

4
𝑞3       0 ≤ 𝑞 ≤ 1

 
1

4
(2 − 𝑞)3                1 ≤ 𝑞 ≤ 2

0                         𝑞 ≥ 2

 (5) 
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where 𝑞 =
𝑟𝑖𝑗

ℎ
=

𝑟𝑖−𝑟𝑗

ℎ
≥ 0 and 𝑟𝑖𝑗 is the distance between the particles. 𝛼𝑑 is the normalisation factor 

for the kernel to ensure the integral of the kernel itself reproduces the unity which is defined as 1 ℎ⁄ , 

10 (7𝜋ℎ2)⁄  and 1 (𝜋ℎ3)⁄  for the cubic spline kernel in one-, two- and three-dimensional space 

respectively. 

 

 
 

Figure 3: Kernel and its support domain 

The integral interpolant is approximated by a summation at particle 𝑖 as: 

 

𝐴(𝒓) =  ∑𝑚𝑗
𝐴𝑗

𝜌𝑗
𝑊𝑖𝑗

𝑖

 (6) 

where 𝜌𝑗 is the density of particle 𝑗 (𝑗 = 1, 2, 3, … . , 𝑁) and 𝑁 is the number of particles within the 

support domain, 𝑚𝑗 is the mass of particle 𝑗. 𝑊𝑖𝑗 = 𝑊(|𝒓𝑖 − 𝒓𝑗|, ℎ) is the kernel function with 

𝒓𝑖𝑗 = |𝒓𝑖 − 𝒓𝑗| is the distance between particles 𝑖 and 𝑗. 

 

 

Due to consideration of the infinitesimally small fluid element, the equation is obtained in partial 

differential equation form. The final version of the continuum equations are often written with the 

divergence term on the right hand side as: 

 
𝐷𝜌

𝐷𝑡
= −𝜌∇ ∙ 𝐯 (7)        

 
𝐷𝐯

𝐷𝑡
= −

1

𝜌
 [∇𝑝 − ∇ ∙ 𝛕] + 𝐠  (8)        

 

where 𝛕 is the shear stress tensor and 𝐠 is gravitational force vector. 

The conservation of mass being solved is: 

𝐷𝜌𝑖
𝐷𝑡

=∑𝑚𝑗𝐯𝑖𝑗 ∙ ∇𝑖𝑊𝑖𝑗

𝑁

𝑗=1

 (9) 

where 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗, which is the relative velocity of particles 𝑖 and 𝑗. 

In this bubble growth model, laminar viscosity, Π𝑖𝑗 proposed by Morris et al. [39] is appropriate to 

represent the processes in a physically more appropriate manner as this flow case is low Reynolds 

number flow.  

 

The conservation of momentum is formed by including the laminar viscosity Π𝑖𝑗 and surface tension 

term 𝐟𝑠 as: 

 

Compact support 

of kernel 

𝑊(𝒓 − 𝒓′, ℎ) 
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𝐷𝐯𝑖
𝐷𝑡

= −∑𝑚𝑗 (
𝑃𝑖 + 𝑃𝑗

𝜌𝑖𝜌𝑗
+ Π𝑖𝑗)

𝑁

𝑗=1

∇𝑖𝑊𝑖𝑗 + 𝐟𝑠 (10) 

where gravitational force (𝑔) is assumed to be zero in the developed model and 𝐟𝑠 is the surface 

tension term explained in the next section. Π𝑖𝑗 the viscosity term is given by, 

 

Π𝑖𝑗 = −
2𝜐𝑖𝑗

𝜌̅𝑖𝑗

𝐫𝑖𝑗

(|𝐫𝑖𝑗|
2
+ 𝜂2)

 (11) 

with 

𝜌̅𝑖𝑗 =
𝜌𝑖 + 𝜌𝑗

2
 (12) 

𝜐𝑖𝑗 =
𝜐𝑖 × 𝜐𝑗

𝜐𝑖 + 𝜐𝑗
 

(13) 

 𝜂 is the constant and is equal to 0.01ℎ. 

 

To link the density and pressure, a compressible equation of state formulation for quasi-

incompressible SPH flows first introduced by Morris et al. [39] has been used since it is 

computationally faster without resulting in large pressure fluctuations. Small density variation can 

cause that large pressure fluctuations and unstable simulations as the developed model is not a static 

bubble case. 

 

𝑃 = 𝑐𝑠
2(𝜌 − 𝜌𝑜) (14) 

Conservation of mass and momentum equations has been integrated in time using a second-order 

predictor-corrector time integration scheme with a variable time step algorithm [41]. 

 

 

3.2 Surface Tension 
 

Surface tension can be explained as the resistance force of the fluid against extension of a surface. 

Surface tension forces are as a result of unbalanced molecular dynamic forces at the free surface 

between two different immiscible fluids such as polymer-air in this study. In order to model the 

surface tension force, the continuum surface force (CSF) is applied in the momentum equation of the 

particles based on the flow geometry [42]. In the CSF model, surface tension is transformed into a 

force per unit volume, 𝐅𝑠 with the following equation: 

 

𝐅𝑠 = 𝐟𝑠 𝛿𝑠 (15) 

where 𝛿𝑠 = |𝑛|, a normalised function (the surface delta function) and 𝐟𝑠 is the force per unit area 

given by: 

 

𝐟𝑠 = 𝜎𝑠κ𝐧̂ + ∇𝑠𝜎𝑠 (16) 

where 𝜎𝑠 is the surface tension coefficient, 𝐧̂ is the unit normal to the interface, κ is the curvature of 

the interface (κ = −∇ ∙ 𝐧̂) , ∇𝑠 is the surface gradient (it will be neglected as surface tension is 

assumed to be constant throughout the fluid). 

 

Figure 4 shows the sketch of continuum surface force acting at the interface of an air bubble. Contour 

colorings separate the different fluids with color function values of 𝐶𝑖
1 and 𝐶𝑖

2 as, 

 

𝐶𝑖
𝑠 = {

 1 if particle belongs to phase s
 0                                    otherwise

 (17) 
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Figure 4: Sketch of continuum surface force (CSF) for phases 1 and 2 

Hu and Adams [28] developed an approach to avoid the problem of particles far from the interface 

influencing the surface tension calculation by adopting the suggestion of Wu et al. [43], who 

expressed the shear stress contributions directly in terms of the color function gradients to calculate 

the surface tension. 

The full momentum equation presented in Equation (10) can be rewritten as: 

 

𝐷𝛎𝑖
𝐷𝑡

= −∑𝑚𝑗 (
𝑃𝑖 + 𝑃𝑗

𝜌𝑖𝜌𝑗
+ Π𝑖𝑗)

𝑁

𝑗=1

∇𝑖𝑊𝑖𝑗 

             +∑𝑚𝑗 (
Φ𝑖 +Φ𝑗

𝜌𝑖𝜌𝑗
)∇𝑖𝑊𝑖𝑗 +

𝑁

𝑗=1

𝐠 

 

 

(18) 

 

where the CSF term Φ is given in a tensor form [28]. 

 

3.3 Detection of Free-Surface Particles and Particle Shifting 
 

In SPH simulations, the particle spatial arrangement can sometimes create situations where the 

particles are too close or too far from each other, leading to numerical instability. A variation of the 

particle shifting algorithm originally proposed by Xu et al. [44] for ISPH will be used to solve the 

stability and accuracy problems such as clumping due to irregular particle distributions. 

 

The initial shifting algorithm of Xu et al. [44] has some significant problems such as noise in the 

pressure field inside the air bubble and also at the interface of the multi-phase, leading to stability 

problems in the simulation. Therefore, a treatment is necessary, especially for the air-water interface. 

A modified algorithm was proposed by Lind et al. [45] to change the shifting magnitude and direction 

according to Fick’s law in order to obtain stable and accurate solutions for both internal and free-
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surface flows. This will help the particles to be shifted by preventing highly anisotropic distributions. 

This behavior is expected for the air particles. Hence, shifting distance can be calculated as: 

 

𝛿𝐫𝑠 = −𝐷∇𝐶𝑖 (19) 

where 𝛿𝐫𝑠 denotes the shifting distance,  𝐷 is a diffusion coefficient which controls the shifting 

magnitude and 𝐶𝑖 is the particle concentration of particle i. The approach proposed by Skillen et al. 

[46] to calculate the diffusion coefficient has been used as: 

 

𝐷 = −𝐴𝑠ℎ‖𝐮‖𝑖∆𝑡 (20) 

where 𝐴𝑠 is a parameter taking a value from 1 to 6 and ‖𝐮‖𝑖 is the velocity magnitude of the 

particle  𝑖. The value of 𝐴𝑠 is the minimum possible value to present effective shifting. The 

recommended value of 2 has been used.  

The particle concentration value can be calculated from the sum of the smoothing kernel function as: 

 

𝐶𝑖 =∑
𝑚𝑗

𝜌𝑗
𝑊𝑖𝑗

𝑁

𝑗=1

 (21) 

The concentration gradient can be found as in [47]: 

 

∇𝐶𝑖 =∑(𝐶𝑗 − 𝐶𝑖)
𝑚𝑗

𝜌𝑗
∇𝑊𝑖𝑗

𝑁

𝑗=1

 (22) 

As shown by Lind et al. [45] and Mokos et al. [48], a more uniform particle distribution has been 

obtained when this shifting method is introduced.  

 

Modifications of the free-surface correction 

Besides the treatments based on the concentration to determine the shifting distance and its direction 

explained above, Lind et al. [45] presented a correction method for the free-surface flows. Equation 

(19) shifts all the particles with a constant movement. Thus, the fluid particles at the interface are 

moved towards the interface to the air particles. This will result in mixing fluid and air particles 

together and creating instabilities. This has been seen in air bubble growth test cases with Xu et al. 

[44]’s shifting algorithm. In order to prevent unphysical mixing or movement at the interface, the 

concentration gradient near the surface should not be controlled by using global coordinates. 

Following from that, the binormal, tangent and normal vectors are considered for the 3-D model, 

allowing the shifting only in the tangent and binormal directions. Therefore, Equation (19) becomes 

[49]: 

 

𝛿𝐫𝑠 = −𝐷 (
𝜕𝐶𝑖
𝜕𝑠

𝐬̂ +
𝜕𝐶𝑖
𝜕𝑏

𝐛̂ + 𝛼𝑛 (
𝜕𝐶𝑖
𝜕𝑛

− 𝛽𝑛) 𝐧̂) (23) 

where 𝐬̂, 𝐧̂ and 𝐛̂ are the tangent, normal and binormal vector respectively to the surface. 𝛽𝑛 is a 

reference concentration gradient for the water phase in the free surface. The parameter 𝛼𝑛 limits the 

diffusion in the normal direction, so the water particles are prevented from moving through the air 

particles. It is set to 0.1 in this study as air bubble modelling can be assumed as slow flows [45]. 

To identify free-surface particles, the divergence of particle position is used [50]. 

∇ ∙ 𝐫 =∑
𝑚𝑗

𝜌𝑗
𝐫𝑖𝑗 ∙

𝑁

𝑗=1

∇𝑖𝑊𝑖𝑗 (24) 

 

This divergence of the particle position equals 2 for 2-D and 3 for 3-D simulations. Hence, for the 3-D 

simulations a threshold value of 2.5 is used to determine the particles belonging to the surface and 
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particle shifting is applied to the phases due to this value, i.e. if ∇ ∙ 𝐫 < 2.5, the particles are 

considered to belong to the surface. 

 

In order to be effective and to obtain accurate results, Equation (19) has been performed for air 

particles so as to allow them to expand without mixing with the fluid phase. The same equation is also 

applied to the fluid particles, except it is applied at the interface. The treatment or surface correction 

term shown in Equation (23) has only been applied to the interface particles. This method was also 

conducted by Mokos et al. [49] to prevent the air phase dispersing in the water phase and creating 

voids. 

 

3.4 Model Description 
 

A single bubble expansion case has been simulated with the properties presented in Table 1. Fluid 1 

and Fluid 2 represent the CO2 gas inside the bubble and polymer melt surrounding the bubble 

respectively.  

 

Table 1: The properties of the 3-D bubble growth model 

Properties of the model 

Box dimension – L (m) 0.05 

Radius of Fluid 1 – R (m) 0.01 

Density of Fluid 1 (kg/m
3
) 1.9 

Density of Fluid 2 (kg/m
3
) 1000 

Speed of Sound of Fluid 1 (m/s) 30 

Speed of Sound of Fluid 2 (m/s) 5 

Surface tension coefficient - 𝝈𝒔 (N/m) 0.5 

Gravity – g (m/s
2
) 0 

Laminar viscosity 
0.01 (water) 

0.01 (air) 

 

The surface tension effects are critical for bubble modelling and growth in microscale engineering 

problems especially for multi-phase problems with low flow. Running the SPH model at microscale 

(1 μm) proved to be unstable numerically. This is due to several factors, most notably that the 

denominator of 𝛼𝑑 in Equation (5) is proportional to ℎ3 in 3-D. As ℎ decreases to the microscale, this 

dependence on 1 ℎ3⁄  proves to be prohibitively unstable. Hence, simulations were performed at the 

millimeter scale to investigate the feasibility of modelling bubble growth. Surface tension effects 

should be scaled according to the relevant dimensionless numbers: namely Reynolds number, Bond 

number, Weber number, Capillary number and Marangoni number given by Bush [51]. Multi-phase 

bubble growth for herein this study in isothermal conditions is dominated by viscosity and surface 

tension effects so that capillary number scaling is the preferable option since it is based on the viscous 

and curvature forces given in Equation (25). 

 

𝐶𝑎 =
𝜌𝜐𝑈

𝜎𝑠
 (25) 

where 𝜐  is the viscosity of polymer, 𝑈 is a characteristic speed as: 

 

𝑈 = √𝑔𝑅 (26) 

The Capillary number represents the ratio of viscous effects to surface tension (curvature) effects. 
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The surface tension coefficient (𝜎𝑠 = 0.028 N m2⁄ ) given in the model parameters of Elshereef et al. 

[52] is for the bubble growth model of which the initial bubble radius is 1 μm. At the micrometer 

scale, the Capillary number is 𝐶𝑎 = 447. Therefore, the surface tension coefficient has been scaled by 

keeping the Capillary number constant, that is (𝐶𝑎)𝜇𝑚 = (𝐶𝑎)𝑚𝑚, to simulate the bubble growth 

process at millimeter size. 

 

The mass conversion from polymer melt to gas (mass loss) due to heat such as fire drives the 

expansion process by increasing the pressure inside the bubble. If the pressure inside the bubble is 

maintained, the volume of the bubble would have to increase as the mass of the gas phase increases. 

This mass transfer has been represented in SPH by increasing the number of gas particles inside the 

bubble during the simulation. The mass and the number of new gas particles have been estimated. The 

simulation of the single bubble growth model has been run up to 0.05 seconds. For an isothermal 

simulation duration of 0.05 s, the predicted expansion of a single bubble of initial radius 10 mm is 11 

mm according to the model properties of Elshereef et al. [52] based on the analytical solution of Patel 

[25]. This expansion is driven by a mass transfer across the interface of 𝑚𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 2.74 × 10
−6 kg 

of gas from the polymer melt into the bubble over a period of 0.05 seconds. In this simulation, it is 

assumed that the mass transfer occurs continuously throughout the simulation duration such that a 

certain number of new gas particles have been inserted into the bubble at regular intervals. For 

example, for a resolution of ∆𝑥 𝑅⁄ = 0.2, the mass of a SPH gas particle, 𝑗, is   𝑚𝑗 = 1.52 × 10
−8 kg. 

Hence 180 (= 𝑚𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑚𝑗⁄ ) new SPH gas particles need to be added to the bubble throughout the 

simulation. The rate of insertion of these particles is presented in the next section.  

 

4 Results 
 

The bubble growth model has been run with two different resolutions with (∆𝑥 𝑅⁄ ) = 0.2 where the 

distance between the particles is 2 mm and (∆𝑥 𝑅⁄ ) = 0.1 where the distance between the particles is 

1 mm. Figure 5 shows the particle distribution of the bubble growth model, with the finer 

resolution ∆𝑥 𝑅⁄ = 0.1, before and after conduction of the particle insertion method. In this 

simulation, 45 new gas particles have been inserted into the area close to the centre of the bubble 

every 0.01 seconds. Even though mass transfer takes place at the interface, adding particles at the 

centre of the bubble is satisfactory since the hydrodynamic conditions within the bubble for the 

timescales of this problem are uniform and steady. Identifying the location for new particles is not 

straightforward. 

 

Special care has been taken not to generate a new gas particle at a position another gas particle has 

already occupied so as to prevent particle clumping. This is achieved by giving a random position to 

new gas particles using the FORTRAN RAND function. This function and position of a new gas 

particle in x, y and z-directions have been given as: 

 

𝑥𝑝𝑛𝑒𝑤 = 𝑥𝑐 + 0.25𝑑𝑥0 + 𝑟𝑎𝑛𝑑(0) × 0.2𝑑𝑥0 

𝑦𝑝𝑛𝑒𝑤 = 𝑦𝑐 + 0.25𝑑𝑦0 + 𝑟𝑎𝑛𝑑(0) × 0.2𝑑𝑦0 

𝑧𝑝𝑛𝑒𝑤 = 𝑧𝑐 + 0.25𝑑𝑧0 + 𝑟𝑎𝑛𝑑(0) × 0.2𝑑𝑧0 

(27) 

where 𝑥𝑝𝑛𝑒𝑤, 𝑦𝑝𝑛𝑒𝑤 and 𝑧𝑝𝑛𝑒𝑤 are the positions of the new particle in three coordinates and 𝑥𝑐, 𝑦𝑐 
and 𝑧𝑐 are the positions of the bubble centre while 𝑑𝑥0, 𝑑𝑦0 and 𝑑𝑧0 are the distances between the 

particles. 𝑟𝑎𝑛𝑑(0) represents the RAND function in FORTRAN which has a value between 0 and 1. 

As new gas particles are introduced into the bubble, a slight expansion has been obtained at t=0.01 s 

as shown in Figure 5 (b). Therefore, the pressure inside the bubble increases while the outer pressure 

remains almost zero at 0.01 s. 
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Figure 5: Particle distribution of the bubble growth model, (a) just before particle insertion at 

𝑡 = 0.00996 𝑠 (b) after particle insertion at 𝑡 = 0.01 𝑠 (2-D slice at y = 25 mm from 3-D simulation) 

Due to presence of the surface tension force, the shape of the bubble remains spherical as shown in 

Figure 6, which shows the final particle arrangements for the two resolutions. As the number of new 

gas particles increases further, the radius of the bubble increases as the air particles at the surface of 

the bubble push the water particles away at the surface. After the new particles’ insertion, the particle 

distribution has been arranged according to the shifting algorithm explained in Section 3.3. However, 

the 𝐷 (diffusion) parameter in Equation (19) has a significant effect on the shifting distance. Xenakis 

et al. [53] proposed a slightly modified shifting (diffusion) parameter to eliminate particle clumping in 

regions of low velocity, and this was implemented in the current code. However, it was found 

necessary to modify the proposal of Xenakis et al. [53] for the current application, to be given by: 

 

(a) 

(b) 

Insertion of new gas 

particles at the center of 

the bubble 
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𝛿𝐫𝑠 = {
−𝐴𝑠ℎ‖𝐮‖𝑖∆𝑡∇𝐶𝑖        ,   𝐷 ≥ 𝐷0
−𝐷0∇𝐶𝑖                       ,   𝐷 < 𝐷0

−𝐷𝑚𝑖𝑛∇𝐶𝑖                       ,   𝐷 < 𝐷𝑚𝑖𝑛

 (28) 

Therefore, the diffusion parameter 𝐷 has been defined as a low threshold diffusion coefficient which 

takes a value of 𝐷0 = 0.01ℎ
2 and a minimum value of 𝐷𝑚𝑖𝑛 = 0.001ℎ

2 for this bubble expansion 

problem. In general for this model, particle shifting works satisfactorily herein and is also necessary 

for these kinds of multi-phase simulation where non-uniform deformations appear. 

 

 
Figure 6: Expansion of the single bubbles at the end of the simulation (a) - Low resolution (∆𝑥/𝑅 =

0.2) (b) - High resolution (∆𝑥/𝑅 = 0.1) 

As mentioned earlier, the simulation of the bubble modelling and expansion has been performed by 

insertion of new gas particles into the bubble at certain times. This particle insertion has been 

performed at regular intervals up to 0.05 seconds. Three simulations have been performed to identify 

the effect of the time period of particle insertion by inserting particles every 0.0025, 0.005 or 0.01 

seconds. The radius of the bubble has been predicted using an algorithm tracking the surface particles 

(a) 

(b) 
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by considering a threshold value of 2.5 for the divergence of particle positions (Equation (24)). The 

radius is given by the average distance of the gas particles at the liquid-gas interface. 

𝑅(𝑡) =
1

𝑁
∑𝑟𝑖

𝑁

𝑖=1

 (29) 

where 𝑟𝑖 is defined as all 𝑁 gas particles where 𝑟 = √(𝑥𝑖 − 𝑥𝑐)
2 + (𝑦𝑖 − 𝑦𝑐)

2 + (𝑧𝑖 − 𝑧𝑐)
2 for which 

∇ ∙ 𝑟𝑖 < 2.5. 

However, as the bubble was not entirely spherical due to the resolution, the initial radius of the bubble 

was not exactly 10 mm. The initial value is approximately 8.9 mm for low resolution (∆𝑥/𝑅 = 0.2) 

and 9.5 mm for high resolution (∆𝑥/𝑅 = 0.1) simulations. 

 

The comparison of the SPH bubble expansion with the analytical solution is shown in Figure 7. The 

predicted radius of the bubble has been shifted in time to have a comparison with the analytical 

solution of Patel [25] given in Section 2.1. There is no bubble growth observed until the new particle 

insertion algorithm performed at either 0.0025 s, 0.005 s or 0.01 s. Although there is a difference 

between the predicted bubble growth and analytical solution, this quite complex multi-phase 

algorithm presented the feasibility of bubble modelling and expansion using the SPH method. 

 

Figure 7 shows a qualitatively appropriate expansion of the bubble with a difference due to the initial 

stages and particle insertion of the SPH simulation.  

Figure 8 shows a comparison of the rate of the bubble expansion 𝑑𝑅 𝑑𝑡⁄  predicted by SPH compared 

with theory. The theoretical bubble expansion rate is initially non-zero. The SPH results initially 

require a short to show an expansion rate but reach close agreement with theory by the end of the 

simulation. This agreement of the numerical results with the bubble expansion rate clearly 

demonstrates the potential of using SPH for polymer materials’ expansion with chemical blowing 

agents. Figure 8 also shows that the rate of particle insertion has a limited effect, particularly for 

simulations longer than 0.05 seconds that are simulated here. 

 

 
Figure 7: Comparison of the bubble growth between SPH modelling and analytical solution 
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Figure 8: Comparison of bubble growth rates 

In order to show numerical stability for the single bubble growth simulation, a time step analysis has 

been performed with a change of time. Figure 9 shows the change of time step (𝑑𝑡) with respect to 

time (𝑡) when gas particles are inserted every 0.01 s. This demonstrates that the time step remains 

unchanged, being controlled by surface tension [42] until the new particles’ introduction. With the 

new gas particles, the interaction and the forces between the particles increases as the distance 

between the particles would be less than the particle distance before insertion of new gas particles so 

that the time step is now controlled by viscous forces where interparticle distance is in the 

denominator, reducing ∆𝑡. Therefore, the time step reduces at 0.01, 0.02, 0.03 and 0.04 seconds based 

on the forces according to the variable time step. 

 

Following the introduction of new particles, for example at 𝑡 = 0.01 s, the shifting algorithm of 

Section 3.3 gradually rearranges the particles to have a more uniform distribution, which is 

demonstrated in the recovery of the time step by 𝑡 = 0.015 s. 
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Figure 9: Change of time step (𝑑𝑡) with time (𝑡) 

 

To demonstrate the need for the new particle shifting routine, Figure 10 represents a particle 

distribution after performing the mass transfer without using the particle shifting. Even though the 

mass inside the bubble has been increased by particle insertion, shrinkage of the bubble can be 

observed. The newly inserted gas particles remain almost at the same positions where they are 

generated while the other gas particles move according to the momentum equation (compare to Figure 

6a). Therefore, the shifting methodology is necessary for simulating bubble growth in multi-phase 

problems. 

 
Figure 10: Particle distribution at 𝑡 = 0.05 s without particle shifting (∆𝑥/𝑅 = 0.02) 

The main challenges of bubble growth modelling will be explained in the following section. 
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5 Conclusions 
 

This paper has presented the feasibility of using the smoothed particle hydrodynamics (SPH) method 

to model the bubble growth process in a polymer material’s expansion. A single gas bubble’s growth 

in surrounding liquid has been developed and the main challenges in terms of the SPH approach have 

been identified and discussed. A new SPH algorithm for representing the mass conversion has been 

performed to predict and simulate the single bubble expansion with and without shifting algorithm. It 

can be concluded that the shifting algorithm has a great influence on the bubble growth as shrinkage 

occurs without shifting. 

The SPH multi-phase model has been validated against an analytical solution. The major advantage of 

using SPH to simulate the multi-phase models compared to other mesh-based computational methods 

is that the highly non-linear and non-uniform behavior of the motion at the interface (e.g. interface 

between polymer melt and gas in this project) can easily be captured without any requirement to 

generate a mesh. For the new approach, particle insertion to represent the mass conversion showed 

that this new SPH model can be applicable for the bubble expansion simulations with further 

improvements required for efficient, accurate and stable multi-phase simulations. 
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