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Abstract: A range of pumps have been developed to handle mixtures of liquid and suspended
solids and rags. The increase in certain solid wastes found in municipal sewage water, however,
can pose signi�cant challenges. The rate of accumulation of rags and �brous clumps is known
to depend on the �ow conditions and certain hydrodynamic properties of the pumps. While it is
di�cult to characterize and quantify experimentally the mechanism that leads to clogging, a fully
coupled �uid and solid computational simulation would allow a visualization of the deformation
of immersed suspended material, a characterization of the �ow and solid dynamic behaviors and,
crucially, an assessment of correlations between �uid and solid responses. Although theoretically
feasible, the task is far from straightforward and no such solution has yet been published for a full
pump case. This article presents initial work on a model developed speci�cally to study �exible
cloths like structures (rags). A computational Fluid Structure Interaction (FSI) model has been
developed and validated. The model includes (i) a Navier-Stokes Finite Volume solver for the �ow
equations, (ii) a coupling algorithm preserving the no slip boundary condition at the interface, (iii)
a Finite Di�erence solution of the variational derivative of the deformation energy for the solid,
and (iv) a solid-�uid interface tracking model. The no slip boundary condition at the solid-�uid
interface is maintained by adding a momentum source term in both the solid and the �uid solvers.
This solution is based on the Immersed Boundary Method (IBM) proposed in [1] which treats the
rag or �ber as a Lagrangian elastic body. Both structural and �uid solvers are implemented in the
open source platform OpenFOAM R©. The method is mainly used in the literature to analyze the
oscillational behavior of �laments or rags constrained at one end. It is extended here to account
for rag/�lament transport in a �owing �uid and interactions with �xed obstacles. Results are
compared to published simulations for validation and then applied to a range of test cases chosen
to represent conditions found in pump applications. The code has been extended for the study of
cases relevant to processes leading up to rag blockage. This includes the analysis of the �lament/rag
motion behind an obstacle, and the interaction of the deformed object with rigid solid surfaces.
The IBM solver for rag motion in �uid �ow is combined with two di�erent collision models for
modeling the interaction of the deformable object with the side walls: (1) A method similar to the
hard sphere collision model is considered to correct the velocity of the Lagrangian points during
collision, and (2) a force based model where a short range repulsive force [2] is applied once the
distance between the slender object and the solid wall becomes smaller than a speci�c threshold.
The results are assessed qualitatively and show that the �ag's response does depend on the collision
model, and con�rm the importance of using a force based model that can be adopted to account
for the solid - solid friction or the lubrication e�ect.

Keywords: Immersed Boundary Method, Fluid Structure Interaction, Rag model, Pumps clogging,
OpenFOAM.
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1 Introduction

Fluid-Structure interaction problems (FSI) are encountered in many biological and engineering applications.
Examples that can be found in the literature include insect wings [3, 4], �sh-like locomotion [5, 6, 7], human
heart valves [8], energy harvesting devices [9], �ag oscillations [10, 11, 12], inverted �ag [13]. The physics of
�ag motion is of particular interest to our project since it describes the rag motion in a free stream �uid �ow
and inside waste water pumps. Despite the di�erence in the �ow regimes and Reynolds numbers in these
applications, the deformable objects involved share the same feature involving arbitrary large deformations
of the �exible bodies inside complicated geometrical �uid domains. The structure can be described as a
thin membrane in a �uid �ow which is either pinned or free from its sides. As the �ow passes over the
deformable surface and leaves at the trailing edge, an instability develops leading to sustained oscillations of
the membrane. At the same time, the general motion of the deformable object leads to vortex shedding at
its free ends. The �uid - solid system includes membrane motion, vortex shedding, membrane inertia e�ect,
membrane bending rigidity restoring e�ect, and Reynolds number e�ect.

Conventional numerical approaches for solving �uid - solid interaction problems are the Arbitrary La-
grangian Eulerian formulation [14, 15] and the Immersed Boundary methods (IBM). In the former method,
the �uid and solid domains are meshed separately. The boundary condition at the solid surface can be
imposed in a straightforward manner. However, an algorithm should be adopted in order to move the �uid
mesh in accordance with the motion of the solid object. This poses a challenging problem in terms of the
computational e�ciency when the solid object experiences large deformations. The Immersed Boundary
methods, on the other hand, are well-suited for complex large deformation of the solid bodies. Although
the IBM methods vary based on their implementation (the Continuous Forcing approach by Peskin [16], the
Direct Forcing approach [17, 18], and the Projection approach [19]), they all share the same advantage which
is the capability of modeling large object deformations without the need for re-meshing of the �uid domain.

The main idea of the Immersed Boundary methods to avoid the complexity of mesh conforming is by
adding a momentum forcing to the equation of motion in order to mimic the complex boundaries. For the
di�erent available IBM methods, this momentum forcing can be formulated directly on the discretized grids
(Discrete Forcing approach [17, 20, 21]) or it can be calculated �rst on the Lagrangian points representing
the solid domain and then it is transferred to the Eulerian �uid domain using smoothed approximation of
the Dirac delta function (Continuous Forcing approach [22, 23]). For more details about the various types
of the IB methods, the reader is referred to the extensive review papers by Sotiropoulos and Yang [24] and
the earlier review by Mittal and Laccarino [25]. In the present study, we focus on the momentum forcing
formulation in the continuous IBM methods.

Among the early IB methods used for solving the �uid -structure coupling is the one developed by Peskin
[26]. In this method, the neutrally buoyant elastic boundaries are accomplished by adding a momentum
forcing to the Navier Stokes equations. This force has non zero values only near or on the structure. Kim and
Peskin [27] developed the Penalty Immersed Boundary method which uses two sets of material points (massive
and massless sets). The two sets are restrained together using a sti� spring. The massless points are moved
according to the Eulerian �uid velocity, while the massive points are calculated in Lagrangian coordinates.
To handle the mass for �uid - structure interactions, Huang et. al, 2007 [23] used a feedback forcing
approach [22]. In this method, a tension force is used for controlling the constraint of the inextensibility.
However, two additional large constants are introduced in the forcing momentum approach which imposes
a limitation on the computational time step for solving the governing equations. This formulation has later
been reformulated using the inertia term in the motion equation of the solid structure [1]. The equations
of the �uid and solid domains are solved separately. To avoid the added constraint on the time step, Lee
and Choi, 2015 [28] solved the governing equations using the discrete forcing approach where the momentum
force used for the coupling is obtained directly from the Navier Stokes equations. The structural equation in
this method is solved on Lagrangian coordinates using thin blocks segmented together to form the slender
body. Pan et. al, 2014 [29] have used the pressure di�erence on the top and bottom of the structural object
for calculating the IBM force. The structural solver in this case is based on the thin shell model. Therefore,
this method requires that there is a speci�c thickness for the �ag.

The numerical study of a �lament �apping using both ALE and IBM methods has received signi�cant
interest the last decade [30, 10, 23]. These studies have concentrated on the �apping of a �lament �xed from
one end and free from the other end under the e�ect of �uid �ow. Its stability has been investigated under
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the e�ect of di�erent �uid and solid characteristics (Reynolds number, solid bending rigidity, solid to �uid
mass ratio). The model has since been extended for simulating two-dimensional (2D) �ag oscillation in a
three-dimensional �ow [11, 31, 32]. The objective of these numerical studies is to extend the understanding
of the �lament stability towards �ag stability in a free stream. It is also worth mentioning the numerical
studies which focused on the e�ect of the wake generated behind a cylinder on the �lament oscillation
[29, 33, 34]. Despite the widespread use of the IBM methods for modeling �ag oscillation, there is, to the
authors knowledge, a lack of study of the �ag motion in free stream or behind obstacles. Furthermore, apart
from the Dirac repulsive collision model used in Huang et. al, 2007 [23], there are no studies on the collision
of �exible objects against solid walls. In the present work, we describe initial work towards the development
of an Immersed Boundary method for the study of rag motion and interaction with solid walls inside waste
water pumps. This includes the study of rag motion in a free stream and behind an obstacle. The collision of
the deformable rag against solid objects is also considered. The main objective of this study is to understand
the clogging process in waste water pumps. These pumps can become partially clogged when the rag wraps
itself around the single impeller. This occurs when the upstream liquid �ow pins the rag to the �at base of
the rotor on which the impeller is mounted.

In this paper, an immersed boundary method based on [11, 23] is implemented in the Open source library
OpenFOAM-2.3.1 [35]. The motion of the deformable object is developed using the variational derivative
of the deformation energy [1] on a Lagrangian grid. The �uid motion is solved using the PIMPLE solver
available in OpenFOAM on an Eulerian grid. The �uid - solid interaction is modeled using a momentum
forcing term added to the solid equation and spread into the Eulerian frame using a Dirac function. The
small time step required by this momentum forcing approach is of the same order as the time step required
for modeling �ow motion inside the pumps. The paper is organized as follows. In next section, the problem
formulation is described. The model is then validated using both �lament oscillation and �ag oscillation in
a free stream. The code is used for simulating free �ag motion in a free stream and behind an obstacle.
Finally, the collision models implemented in the code are analyzed using �ag collision against side walls and
rigid obstacle.

2 Problem Formulation

This section describes the three dimensional (3D) computational model for simulating the motion of elastic
slender objects in �uid �ow. Two di�erent cases are recognized based on the dimensions of the solid object
(Figure 1); (I) �lament motion (1D) in a 2D free stream, (II) 2D �ag motion in a 3D free stream.

2.1 Governing Equations

The incompressible viscous �uid �ow is governed by the Navier Stokes equations written as:

ρf (
∂u

∂t
+ u · Ou) = −Op+ µO2u + f (1)

O · u = 0 (2)

where ρf is the �uid density, u is the �uid velocity, p is the �uid pressure, µ is the �uid viscosity, and f is the
momentum forcing applied to enforce the no-slip boundary condition along the interface between the �exible
object and the �uid �ow. The �uid is solved using the PIMPLE solver available in the open source library
OpenFOAM-2.3.1 [35] where the governing equations are discretized based on a Finite Volume formulation.
The �uid domain is discretized in this study on an Eulerian uniform structured mesh. The spatial derivatives
are discretized using second order schemes while the time derivatives are discretized using the Euler implicit
scheme. The pressure-velocity coupling is solved using the merged SIMPLE-PISO algorithm (PIMPLE)
[36]. The Semi-Implicit Method for Pressure-Linked equations (SIMPLE) [37] couples the Navier-Stokes
equations with an iterative procedure in order to calculate the pressure scalar values using the updated
velocity, while the Pressure Implicit Splitting Operator (PISO) [38] algorithm is used to rectify the pressure-
velocity correction. For more details about the �uid solver, the reader is referred to the OpenFOAM user
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Figure 1: Schematic diagram of the computational con�guration and coordinate systems; Top: 2D �ag in a
free stream, Bottom: 1D �lament in a free stream.

guide [36].
The equation of motion of the elastic body is derived in a Lagrangian frame (s1, s2) using the variational

derivative of the deformation energy [1]. For a �exible �lament in a two dimensional �ow, the governing
equation for the motion of the �lament can be written as:

ρ1
∂2X

∂t2
=

∂

∂s
(σ11

∂X

∂s
)− ∂2

∂s2
(γ11

∂2X

∂s2
) + ρ1g − F + Fc (3)

where s in the arc length, g is the gravitational acceleration, X is the position vector of the Lagrangian
solid points, σ11 is the tension force along the �lament axis, γ11 is the bending rigidity, F is the momentum
forcing which represents the e�ect of the �uid on the solid, and Fc is the collision force. The term ρ1

denotes the density di�erence between the �lament and the surrounding �uid, and it has the value ρ1 = 0
for neutrally buoyant objects. Two di�erent boundary conditions are applied for the �lament case: (1)
free end boundary condition (σ11 = 0, ∂

2X
∂s2 = (0, 0), ∂

3X
∂s3 = (0, 0)) and (2) �xed end boundary condition

(X = constant, ∂
2X
∂s2 = (0, 0)).

For a �exible two dimensional �ag in a 3D free stream, the governing equation for the motion of the �ag
can be written as:

ρ1
∂2X

∂t2
=

2∑
i,j=1

[
∂

∂si
(σij

∂X

∂sj
)− ∂2

∂si∂sj
(γij

∂2X

∂si∂sj
)] + ρ1g − F + Fc (4)

where σij = ϕij(Tij − T 0
ij) and γij = ζij(Bij − B0

ij). The term Tij = ∂X
∂si
· ∂X∂sj refers to the stretching e�ect

(i = j) or the shearing e�ect (i 6= j), while the term Bij = ∂2X
∂si∂sj

· ∂2X
∂si∂sj

refers to the bending e�ect (i = j)
or the twisting e�ect (i 6= j). The constants ϕij and ζij are the tension and bending coe�cients, respectively.
The superscript 0 denotes the initial value. The density di�erence ρ1 can be calculated as ρ1 = ρs−ρfc where
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ρs is the solid density and c is the �ag thickness. Two di�erent boundary conditions are also applied for the
�ag case: (1) �xed boundary (X = constant, ∂

2X
∂s2i

= (0, 0) For i = 1 or 2) and (2) the free end boundary

(∂
2X
∂s2 = (0, 0), ∂

3X
∂s3 = (0, 0) For i = 1 or 2 and σij = 0, γij = 0 For i = 1 or 2).

The equation of motion of the solid solver is discretized using the Finite Di�erence formulation following
the approach introduced in [1, 23]. This discretization is a �rst order accurate and it requires small time
steps to avoid instability. However, the order of the time step size used in this paper is the same as
that required for solving the �uid �ows inside the single impeller rotating pumps used in our application.
For comparisons against the numerical benchmarking data, the following non-dimensional parameters can be
de�ned using the �ag/�lament length L and the free stream velocity U : the non dimensional time t∗ = tL/U ,
the non dimensional length y∗ = y/L, Reynolds number Re =

ρfUL
µ , Froude number Fr = gL/U2, the non-

dimensional bending rigidity KB = ζ
ρ1U2L2 , the non-dimensional tension coe�cient KT = ϕ

ρ1U2 , and the
non-dimensional mass ratio ρ = ρ1

ρfL
. For the rest of the paper, the non dimensional values are considered

and the Astrix is dropped from the non dimensional time and length values.

2.2 Fluid - Structure Interaction

The momentum forcing term employed by [11, 1] is adopted in this paper to deal with the �uid - solid
interaction. This force is evaluated directly from the equation of solid motion. Two sets of Lagrangian
points are used: The structure points (X) calculated from the �ag motion equation and the immersed
boundary points (Xib) obtained from local �uid velocity Uib. The momentum forcing in the solid equation
is calculated as:

F = −Kibm(Xn+1
ib − 2Xn + Xn−1) (5)

where the superscript n represents the time step, Xn+1
ib is the new estimated position of the IB point and is

calculated asXn+1
ib = Xn

ib+Un
ib∆t. The velocityUn

ib at the positionXn
ib is calculated by linearly interpolating

the velocity value at the closest cell center on the Eulerain frame. Kibm is a large constant value [1]. The
Lagrangian momentum forcing is spread into the Eulerian domain by using the Dirac delta function as:

fn =

∫
Γ

Fn(Γ, t)δ(x−Xn(Γ, t))dΓ (6)

Note that the integration is
∫

Γ
(−)dΓ =

∫
s

(−)ds for the �lament case and
∫

Γ
(−)dΓ =

∫
s1

∫
s2

(−)ds1ds2

for the �ag case. The Dirac function for moving �ags in a 3D �uid �ow is calculated using four points as:

δ(X) =
1

h3
ϕ(
x

h
)ϕ(

y

h
)ϕ(

z

h
) (7)

ϕ(r) =


1
8 (3− 2|r|+

√
1 + 4|r| − 4|r2|) 0 ≤ |r| < 1

1
8 (5− 2|r|+

√
−7 + 12|r| − 4|r2|) 1 ≤ |r| < 2

0 2 ≤ |r|
(8)

where h is the Eulerian mesh size. For non-dimensional solvers, the Eulerian momentum forcing is multiplied
by the mass ratio ρ for non-dimensionalisation purposes.

2.3 Collision Model

In this paper, we present a model for collision of deformable objects with solid surfaces. The accurate
modeling of collision can be challenging due to multiple e�ects taking place. These include the large surface
deformation, the squeezing of the liquid trapped between the two colliding objects, the excessive local grid
re�nement which would ideally be required to resolve the liquid �lm, and the physical properties of both
the colliding objects and the �uid domain. To the authors knowledge, most published research to date has
focused on either the collision of two rigid objects (Lubrication theory) or the collision of small particles
against rigid walls. However, for the collision between two oscillating �exible �laments, Huang et. al, 2007
[23] has incorporated a collision model into the �lament solid equation based on a repulsive force calculated
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using the Dirac delta function in the line connecting the two colliding points of the approaching �laments
but this did not take account of dominant forces from �uid structure interactions.

Contrary to the collision of the deformable objects against rigid walls, various approaches have been con-
sidered for particle-wall collision, (a) the mesh between the two colliding objects may be reduced su�ciently
so that the collision process can be modeled with the traditional Navier Stokes equations, (b) hard sphere
model where a solid body collision model may be implemented whereas the position of the colliding objects
is modi�ed if the collision takes place after solving the momentum equation of these objects [39, 40], (c) soft
sphere model which applies normal and tangential forces to the momentum equation of the colliding objects
using the overlapping distance between them [41, 42], (d) short range repulsive force is implemented once
the distance between the two objects goes below a speci�c threshold [2, 43], (e) repulsive force based on
the lubrication theory is implemented once the distance between the two objects falls below a speci�c value
[44], (f) coupled model considering both a repulsive force and a lubrication force [45, 46]. A review of the
di�erent collision models is available in [45].

In the present study, two di�erent approaches are considered: (a) A correction similar to the hard sphere
model is implemented where the position of the Lagrangian points is updated using only the e�ect of �uid
�ow. Upon solving the momentum equation of the �exible object, the position of the Lagrangian points are
corrected using this model if the normal distance between this point and closest rigid surface falls below a
speci�c threshold from the rigid surface or if the Lagrangian point penetrates the rigid surface.

Xn+1 = Xn + Un
ib ×∆t (9)

The second model implements a short range repulsive force for handling the collision between the de-
formable objects and the solid surfaces. Due to the �uid lubrication (water in the case of waste water
pumps), there is no contact during the collision process. Rather, the two objects interact repulsively via
the intervening liquid when they are in a close proximity. In the present simulations, the repulsive force is
activated once the distance between the colliding objects falls below a speci�c threshold (2h). Furthermore,
this force is calculated using both the momentum forcing and the gravity terms in the solid solver. The
purpose of this force is to lessen the acceleration of the motion of the deformable object towards the rigid
surface. This repulsive force is applied only in the normal direction to the rigid walls and can be formulated
as follows:

Fc = kw(−(Fibm)n − gn)(
2h− d
h

) (10)

where Kw is a sti�ness constant parameter used to control the strength of the collision force. The subscript
n stands for the normal direction to the rigid surface. The term d stands for the shortest normal distance
between the Lagrangian point of the �exible object and the closest solid wall boundary face center. The
collision force is applied only if it is pointing towards the �uid domain.

3 Solution procedure

The overall solution procedure for the simulation of �uid-�exible structure interaction is summarized as
follows:

• At the nth time step, the Lagrangian momentum forcing is calculated using the �uid �ow velocity of
the previous time step. Then, the Eulerian Momentum forcing is updated.

• Navier Stokes equations are solved to update both the �uid velocity �eld (un+1) and the pressure �eld
(pn+1).

• The new IB points (Xn+1
ib ) are updated and then the Lagrangian momentum forcing is calculated.

• The equation of motion for the �exible objects is solved to update the solid position (Xn+1).
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Figure 2: Superposition of the �lament positions at successive times for a half cycle of the �lament oscillation.
Left: Present data, Right: data from Huang et. al, 2007 [23].

4 Results and Discussion

The present numerical method is applied to di�erent �uid-structure interaction problems: A hanging �lament
without ambient �uid, a �ow around a �exible �lament �xed from one side and free from the other side, a
�ag oscillation in a free stream, a �ag motion in a free stream and behind an obstacle, and a �ag collision
against a side wall and an obstacle. For the �rst problems, the model is validated against benchmarking
data available in the literature. Then, the model is used for investigating the �ag behavior in a free motion
and under the di�erent collision models proposed.

4.1 Two dimensional �exible �lament in a free stream

To validate the present equation of motion for �exible objects, the motion of a hanging �lament is investigated
under the e�ect of the gravitational force and without ambient �uid. Therefore, the momentum forcing term
in the solid solver is omitted in this case. The �lament is �xed from one end and free from the other end.
It has a length of L = 1 and a non dimensional bending rigidity KB = 0.01. The initial position of the
�lament is inclined at an angle of 0.1π with the equilibrium. The only external force applied to the �lament
is the gravitational acceleration (Fr = 10). The �lament is discretized using 64 points in the Lagrangian
domain. Figure 2 shows a comparison of the �lament superposition over successive time steps against the
data presented by Huang et. al, 2007 [23]. During the oscillation, the �lament behavior is analogous to a
pendulum rope with a slightly curved line. The time history of the Y position for the �lament's free end
point (point A in Figure 1 ) is plotted in Figure 3. It is clear that the results obtained with the present
solid solver agree very well with the previous studies in the literature. The equation of motion for the
�exible object is solved considering that the �lament does not extend during its motion (inextensibility
condition). This is achieved by using a su�ciently large value for the tension coe�cient. For KT = 1000 in
the previous test case, the error in the �lament length is calculated at the time when the �lament experiences
a maximum de�ection (t = 1.38 ) and is found to be equal to 0.23%. This proves that the �lament satis�es
the inextensibility condition during its oscillation.

The �uid - structure interaction coupling is validated using a �exible �lament under the e�ect of a free
stream. The �lament has a length L and is pinned at the leading edge and free at the trailing edge. Both
the free stream and the gravitational acceleration directions are parallel to the x-direction. The �lament
is initially inclined with respect to the free stream direction (the inclination angle with the x-direction is
θ = 0.1π). The size of the Eulerian computational domain is [−2L, 6L] × [−4L, 4L] and the Eulerian mesh
step size in both the streamwise and transverse directions is ∆x = ∆y = L/64. The Dirichlet boundary
condition is applied at the in�ow with a velocity applied only in the x-direction (ux = U, uy = 0). A
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Figure 3: Time history of the free end position of the �lament. The continuous line is the present results
and the black dots are the data of Huang et. al, 2007 [23].

constant pressure boundary condition is applied at the out�ow and a no-slip wall boundary condition is
applied at the top and bottom sides of the numerical domain. The properties of the �exible �lament and the
characteristics of the numerical domain are described by the following dimensionless parameters: ρ = 1.5,
Fr = 0.5, Re = 200, KB = 0.001, KT = 1000, and ∆s = L/64. For �lament oscillation under di�erent
Lagrangian mesh resolutions, Huang et al., 2007 [23] found a slight deviation in the results for Lagrangian
mesh step sizes larger than L/48. Hence, the mesh resolution used in this work is considered to satisfy the
mesh convergence criterion.

Figure 4 displays the time history of the trailing edge transverse location during the �lament motion
along with the results of Huang et. al, 2007 [23]. Two di�erent cases are considered in our simulations: (i)
Kibm = 105,∆t = 3× 10−4 and (ii) Kibm = 106,∆t = 1× 10−4. The instantaneous evolution of the trailing
edge position highlights that the �lament, under the prescribed conditions, develops a sustained �apping
oscillation due to the coupled �uid - solid interaction. It is evidenced that the present results agree well with
those from Huang et. al, 2007 [23]. However, a slight deviation is noticed in terms of the period of oscillation
(case (ii)) and amplitude of oscillation (case (i)). The sensitivity of the numerical results to the choice of the
constant (Kibm) and the di�erence with the benchmarking data can be attributed to di�erent reasons. The
physical problem studied here is an unstable test case where the �lament should experience a continuous
oscillation due to the strong coupling between the �uid and the solid. Lee and Choi, 2015 have shown that
for ρ > 5, the �lament should experience unstable oscillations based on the value of the bending rigidity.
In contrast, for density ratios ρ < 5, the �lament oscillations due to external perturbations should dampen
after a short period of time. For the industrial application of cloth transport through a pump, the cloth
has density value close to that of the surrounding �uid and therefore the cloth, if �xed from one side, will
come to rest after a short period of time. The benchmarking numerical data presented in Figure 4 are also
obtained using di�erent formulation for the momentum forcing with two large negative constants instead of
the Kibm employed in this paper. Figure 4 also highlights the sensitivity of the results to the choice of the
time step size. This sensitivity is shown in Huang et. al, 2010 [11] when they derived the momentum forcing
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Figure 4: Time history of the transverse displacement of the free end position of the �lament under the e�ect
of both the �uid �ow and gravity (Re=200, Fr=0.5). The continuous lines represent the current results and
the black dots are provided by Huang et. al, 2007 [23].

formulation from the equation of motion of the �exible object. The authors suggest that the momentum
forcing should be inversely proportional to the time step size. Thus, using higher values of Kibm in the
numerical simulations requires a reduction in the time step size in order to obtain consistent results and
to avoid numerical instability. Numerical tests indicate that the constant Kibm must be su�ciently large
enough to couple the �uid and solid solvers. The choice of this IBM constant , however, is fairly arbitrary
and depends on the type of �ow and the physical problem considered.

Figure 5 shows the trajectory of the trailing edge for one single period (case ii) compared against the
trajectory obtained by Lee and Choi, 2015 [12]. The numerical results in this paper display the �gure of
eight (∞) similarly to the literature. However, the results shown in [12] indicate a higher stretching of the
�lament in the transverse direction compared to the present results. The magnitude of the oscillation of the
trailing edge obtained by Lee and Choi, 2015 [12] is also slightly higher than both the current results and
the data of Huang et al, 2007 [23]. Figure 6 shows the vorticity contours at Re = 200 shed from the �exible
�lament during its oscillation for one complete period. This �gure clearly shows the successive shedding of
two small vortices combined into a single rotating structure. Similar conclusions also noticed by Huang et.
al, 2007 [23] in terms of the behavior of the vortices behind the �lament.

4.2 Three dimensional �apping �ag in a free stream

In this section, a simulation of a 2D �ag �apping in a three-dimensional �ow is conducted. The schematic
diagram of the �ag inside the �uid domain with both Lagrangian and Eulerian coordinate systems is shown
in Figure 1. The �ag shape is square with length L and initial position inclined at an angle 0.1π from
the x-direction. The plane xz is parallel to the streamwise direction and the y-axis is perpendicular to the
free stream. The size of the computational domain is [−L, 4L] × [−2L, 2L] × [−L,L] . The �uid domain is
discretized using a uniform mesh with mesh step size ∆x = ∆y = ∆z = L/25. The mesh resolution used for
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Figure 5: Trajectory of the trailing edge location during one full cycle of the �lament oscillation compared
to the results of Lee and Choi, 2015 [12].

the Lagrangian domain is ∆s1 = ∆s2 = L/50. The �ag is �xed (pinned) from one end and free from the other
ends so that the �apping under the e�ect of the �uid �ow will be parallel to the y-direction. The Dirichlet
boundary condition is applied at the in�ow with a velocity applied only in the x-direction (ux = U, uy = 0
). A constant pressure boundary condition is applied at the out�ow and a no-slip wall boundary condition
is applied at the top and bottom sides of the numerical domain. The properties of the �exible �ag are
described by the following non dimensional parameters. The density ratio ρ = 1, the tension coe�cient and
the bending rigidity in all the directions are KT = 100,KB = 0.0001, respectively. For comparison against
the results of Huang et. al, 2010 [11], both Reynolds number and Froude number are chosen as: Re = 200
and Fr = 0.0, respectively. The momentum forcing is calculated using the IBM constant value Kibm = 105

and the time step size considered in the simulations is ∆t = 3× 10−4. Later, the e�ect of the gravity will be
activated to study the free �ag motion in a free stream.

The instantaneous �ag position at four di�erent time instants is shown in Figure 7. During the �ag
oscillations, the trailing edge travels from its maximum transverse position across the equilibrium state
(parallel to the xz plane) towards its maximum transverse position in the opposite side of the equilibrium
plane and then it repeats the cycle again with sustained continuous oscillation. The �ag during its motion
has a symmetric shape in the spanwise direction as evidenced in [11]. Figure 8 shows the superposition of
center line of the �ag along with those obtained in Huang et. al, 2010 [11]. The center line as drawn in
Figure 1 passes from the point A at the trailing edge parallel to the x-axis towards the leading edge of the
�ag. The behavior obtained in this paper for the center line during the oscillation is qualitatively comparable
with those in Huang et. al, 2010 [11]. The �gure of eight (∞) formed by the motion of the point A at the
trailing edge can also be seen in this �gure.

Figure 9 shows the time history of the trailing edge transverse location at the point A (as indicated in
Figure 1) compared with the results of Huang et. al, 2010 [11]. The non dimensional time used in this �gure
is divided by the period of oscillation for the �ag. The present results agree well with those in the literature.
The �ag undergoes sustained continues oscillations due to the coupled �uid - solid interaction. Furthermore,
for Re = 200 the amplitude of oscillation of the sides of the trailing edge are the same as the center point
A. Similar behavior is also noticed in the literature. There are, however, some discrepancies in both the
phase and amplitude of oscillations. The percentage error in the magnitude (measured from peak to peak)
compared to the literature is 3.4%. Figure 10 shows a snapshot of the vortical structure behind the �ag
where the hairpin-like vortices with two antennae are formed and shed from the �ag after each �apping and
it is shown to be approximately symmetrical about the �ag center line. This �ow pattern and the vortical
structure around the �ag is consistent with those observed by both Huang et. al, 2010 [11] and Lee and
Choi, 2015 [12].

The discrepancies in the quantitative values for both phase and amplitude of oscillation are most likely
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Figure 6: Instantaneous vorticity contour of a uniform �ow over a �lament at Re=200, Fr=0.5, KB = 0.001,
and ρ = 1.5. The non dimensional time sequence is as follows: (a) 20, (b) 20.25, (c) 20.5, (d) 20.75, (e) 21,
(f) 21.25.

due to three main factors. First, despite the fact that the solid solver is discretized and solved using similar
methods as applied in Huang et al., 2010 [11], the Navier Stokes equations (�uid domain) are solved using
the PIMPLE solver in OpenFOAM while the projection method is used in Huang et. al, 2010 [11], and
small di�erence in the �ow solver can be expected to impact on the coupling in a non negligible way due
to the highly dynamic nature of motion. Second, the value for the tension coe�cient in the longitudinal
direction used in this work is KT = 100 which is one order less than the one used in Huang et. al, 2010
[11]. However, for stability reasons, smaller time step sizes are required in order to use larger values for the
tension coe�cient. Third, the numerical domain in the longitudinal direction is smaller than that in Huang
et. al, 2010 [11]. The choice of the numerical domain was restricted due to computational limitations. This
�ag oscillation test case required large computational time in order to investigate the continuous sustained
oscillations. Nevertheless, the present code was capable of predicting the sustained �ag oscillations and �ow
structure consistent with published results in the literature. Results indicate that for �exible objects with
large surface deformations, large tension coe�cients should be used to satisfy the inextensibility condition.
Also, the number of Lagrangian points required to capture properly the �ag deformation and bending forces
on the �ag was also found to increase when the �ag is expected to undergo large surface deformations. The
IBM constant should also be chosen a priori based on both theoretical and experimental understanding of
the problem under investigation.

4.3 Three dimensional free �ag motion

In this section, the e�ect of the solid to �uid density ratio ρ on the behavior of a free moving �ag in a
uniform �ow is studied. The size of the computational domain is [−L, 7L]× [−L,L]× [−L,L]. The Eulerian
domain is discretized using a uniform structured mesh with mesh size ∆x = ∆y = ∆z = L/25. The �ag
is initially positioned parallel to the yz plane at a distance x = L from the inlet boundary condition. The
initial shape of the �ag is square with side length L. The number of points representing the Lagrangian
domain are 50×50. The free boundary condition is applied at all the sides of the �exible �ag so that it moves
freely under the e�ect of the �uid �ow. The Dirichlet boundary condition is considered at the in�ow with a
non-zero velocity applied only in the x-direction (ux = U, uy = 0 ). A constant pressure boundary condition
is applied at the out�ow and a no-slip wall boundary condition is applied at the top and bottom sides of
the numerical domain. In the present simulations, we use Re = 200 and Fr = 10 for the �uid domain, and
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Figure 7: Instantaneous positions of a �apping �ag at four instants labelled as:(a):5.4, (b):6.3, (c):7.2, (d):8.1.

KT = 100 and KB = 0.001 for the elastic surface. The gravitational acceleration is applied along with the
free stream direction (x- direction). Four di�erent values for the solid - �uid density ratios are considered
ρ = 0.05, 0.5, 1 and 2. The IBM constant used in calculating the Lagrangian momentum forcing term is set
to Kibm = 105, and a time step size of ∆t = 3× 10−4 is used.

Figure 11 displays snapshots of the �ag under successive time steps during its motion in the free stream
direction ( x - direction) for the four density ratios considered. For each test case, the �ag is visualized
starting from its initial position (left side of the �gure) until it leaves the numerical domain. The step size
between the successive images is constant for all the density ratios (t = 0.3). The time required for the �ag
to travel along the �uid domain varies from t = 1.7 for ρ = 2 to t = 3.8 for ρ = 0.05 indicating that the �ag
travels faster for the large density ratios. For all the test cases, the �ag deforms slightly during its motion
taking a concave shape for the small density ratios. The shape of the �ag is more �attened for the large
density ratios. Furthermore, the �ag with the small density ratios sustains its deformed shape during the
motion. In contrast, for large density ratios, the �ag deforms and recovers its �at shape while �owing along
with the free stream. Apart from the speed of the �ag during its motion, all the studied cases proves that
the the �ag retains its symmetric shape during the motion in the uniform �ow. To investigate the e�ect of
a non-uniform �uid �ow on the motion of �exible objects, the �ag with density ratio ρ = 0.05 is located
in the entrainment region behind an obstacle with a square shape. The numerical domain used in the free
�ag motion is considered. In addition, and obstacle with a dimension of 0.4L × 0.4L × 2L is positioned
at location x = 0. The top image in Figure 12 shows the obstacle inside the �uid domain and the initial
position of the �ag behind the obstacle. The numerical simulation is performed �rst without considering
the �ag inside the numerical domain in order to provide a su�cient time to develop the wake behind the
obstacle (Time considered for the �uid solver only is t = 0.9). The �ag is then positioned in the wake region
at a distance x = L. Figure 12 shows that the �ag experiences large deformations compared to the one
located in a free stream. Based on the deformation of the �ag, three di�erent regions can be noticed; the
sides of the �ag which are exposed directly to the free stream and the center of the �ag which is positioned
in the wake region behind the obstacle. The �ag travels faster at its sides than the center. As a consequence,
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Figure 8: Top view of superposition of the �ag's center line passing through the point A at the trailing edge.
Right: present data, Left: data from Huang et. al, 2010[11].

the �ag is exposed to strong deformations so that it loses its symmetrical shape in the downstream �ow.
Thus, for �uid structure interaction problems in waste water pumps with �exible objects having slightly
larger densities than the surrounding �uid, the �ow pattern plays a signi�cant role in the behavior of the
rag during its motion inside the pump. Large vortical structures and non-uniform �ows enhance the large
deformation of the �exible bodies which, in turn, increases the possibility of rag clogging in the trailing edge
of the impeller of waste water pumps. Hence, reducing the e�ciency of the pump. For extensible clogged
rags inside the pump, a maintenance procedure is required to clean the pump so it returns to its standard
operational condition.

4.4 Flag collision against rigid objects

In this section the collision models implemented in the numerical code are studied. First, the free motion
and collision of a �exible �ag against the side walls of the �uid domain is considered. The size of the
computational domain is [−L, 7L] × [−L,L] × [−L,L]. The �uid domain is discretized using a uniform
structured mesh with mesh size ∆x = ∆y = ∆z = L/25. The �ag has a square initial shape with side
length L and is initially positioned parallel to the xz plane at a height y = 0.5L from the lower wall of the
�uid region (See the top image in Figure 13). The number of points representing the Lagrangian domain
are 50 × 50. The free boundary condition is applied at all the sides of the �exible �ag so that it moves
freely under the e�ect of the �uid �ow. The Dirichlet boundary condition is considered at the in�ow with
a non-zero velocity applied only in the x-direction (ux = U, uy = 0 ). In the present simulations, we use
Re = 200 and Fr = 0.5 for the �uid domain, and KT = 100 and KB = 0.001 for the elastic surface. The
gravitational acceleration is applied at an angle θ = −45◦ with the free stream direction (x- direction). Two
di�erent values of the solid - �uid density ratio are considered ρ = 0.5 and 1. For each density ratio, two
values for the collision sti�ness constant are studied Kw = 0.1 and 1. The IBM constant used in calculating
the Lagrangian momentum forcing term is set to Kibm = 105 and a time step size of ∆t = 3× 10−4 is used.

Figure 13 shows the visualization of the �ag during it motion and collision against the bottom wall of
the �uid domain for the repulsive collision force model with ρ = 0.5 and Kw = 0.1. Due to the e�ect of the
�uid �ow, the �ag travels along the x-direction. However, the �ag transforms also in y-direction and gets
closer to the bottom wall due to the e�ect of the gravity. The �ag does not sustain its horizontal shape.
Rather, a deformation in the �ag is noticed. This shape deformation strengthens once the �ag's leading edge
starts penetrating the region of the boundary layer. During the approach, the �ag does not collide against
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Figure 9: Time history of the transverse displacement of the point A at center of the trailing edge of the �ag
for Re=200 and Fr=0.0. The continuous line is for the present data and the black dots are for the data of
Huang et. al, 2010[11].

the rigid wall and a thin liquid �lm is maintained separating the �exible and rigid surfaces. Following the
initial approach phase, the �ag starts rebounding from the solid surface and the minimum �lm thickness
shifts from the leading edge towards the trailing edge. Then, the �ag travels parallel to the bottom wall
creating a conical liquid �lm with the solid surface. The conical shape has its large radius at the leading
edge of the �ag and its small radius at the trailing edge.

Figure 14 plots the history of motion for the �ag center line (as indicated in Figure 1) for the di�erent
density ratios and collision constants mentioned above. It is clear that the collision of the �ag is strongly
in�uenced by the solid �uid density ratio. For ρ = 1, the thickness of the �lm trapped between the two
solid surfaces is thinner than the case with ρ = 0.5. However, the liquid �lm is always maintained between
the solid domains. This indicates that neutrally buoyant �ag approaching a rigid wall inside a �uid domain
would not rebound or collide with the rigid surface. Instead, the �ag will slide along the rigid surface with
a thin liquid �lm remaining between the two solid domains. Figure 14 also highlights that for large density
ratios, there is a strong sensitivity of the numerical results to the choice of the collision constant Kw. For
ρ = 1, higher values for Kw are required in order to avoid the penetration. The dependence of the collision
process on the value of the constant Kw decreases for smaller solid to �uid density ratios. More in depth
studies for the collision constant Kw and the collision force will be discussed in future works.

The hard sphere like collision model is also applied to the �ag collision problem described above (The
results are not shown here). The Lagrangian points are �agged once their normal distance to the rigid
surface falls below 2h. The hard sphere model applied in this code advances the �agged Lagrangian points
using only the velocity of the �uid domain. This prevents the penetration of the �exible object inside the
rigid wall as the value of the velocity component normal to the wall at the boundary cells is zero. Due to
the existence of the boundary layer, the �agged Lagrangian points in this layer are advanced in the �ow
direction using very small velocity values compared to the points away from the boundary layer. This leads
to large stretching of the �ag in the �ow direction as the points close to the wall are almost pinned to the wall
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Figure 10: Vortical structures shedding from the �apping �ag at the instant when the trailing edge reaches
its minimum transverse position.

while the rest of the �ag points are advancing in consistent with the free stream. Thus, applying the hard
sphere like collision model violates the inextensibility condition applied in this code which, in turn, leads to
numerical instability. The comparison of the e�ciency and accuracy of both collision models implemented
highlights the superiority of the repulsive force collision model for simulating the interaction between the
�exible object and the rigid wall. Furthermore, contrary to the hard sphere model, the repulsive force takes
into account the e�ect of the �uid �ow in the region around the �ag and inside the �lm region similarly to
the lubrication models.

The repulsive force collision model is implemented for the simulation of �ag collision against a blu� rigid
body with rectangular shape (L×0.4L). The numerical �uid domain is similar to the one used for the collision
analysis above. The �uid domain is de�ned using Re = 200 and Fr = 0.5. The gravitational acceleration
and the �uid �ow are parallel to the x-direction. The density ratio employed in this case is very close to
the neutrally buoyant case (ρ = 0.05) and the collision force is calculated using the constant Kw = 0.1. The
obstacle is positioned at x = 2L. The initial shape of the �ag is parallel to the yz plane and located at
x = L. The sides of the �ag are closer to the upper wall than the lower wall. This position is chosen so
that the �ag does not get caught with the obstacle (This will be performed in future work). Figure 15 shows
the visualization of the �ag during its motion and collision against the obstacle. The background in this
�gure depicts the �ow velocity pattern and the wake generated behind the obstacle. As the �ag gets closer
to the obstacle, the lower side of the �ag collides against the obstacle while the upper part continues moving
with the free stream. This leads to large surface deformation around the top left corner of the obstacle.
Afterwards, the �ag continues deforming and wraps around the obstacle. However, the �ag does not wrap
completely around the corner of the obstacle due to the bending rigidity of the �ag. Then, the trailing
edge of the �ag rebounds from the side edge of the obstacle and the �ag recovers its straight shape as it
moves in the downstream direction. The restoring of the �at shape occurs only at the trailing edge which
moves faster than the leading edge. The surface starts deforming again as the �ag moves behind the obstacle
and gets entrained into the wake region of the obstacle. Depending on the inertia of the �uid �ow and the
solid bending rigidity, the �ag might deform strongly and experience a self collision. Further analysis of the
collision against solid obstacles will be performed in future works.

5 Conclusions and Future Work

In the present study, an immersed boundary method has been implemented and validated for the study
of �uid structure interaction problems. The equation of motion for the deformable object is solved on a
Lagrangian grid using the Finite Di�erence method, while the Navier Stokes equations for modeling the
�uid domain are solved on an Eulerian grid using the PIMPLE solver available in the open source library
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Figure 11: Superposition of the �ag positions at di�erent time intervals (t=0.3) during its free motion for
four di�erent solid �uid density ratios ordered from top to bottom as: ρ = 0.05, 0.5, 1, and 2, respectively.

(OpenFOAM-2.3.1). A momentum forcing term is added to the solid equation in order to account for the
�uid structure interaction. This force is spread into the Eulerian domain using smoothed Dirac function.
The numerical model is validated �rst using two di�erent test cases: (i) �lament �apping in a free stream,
and (ii) three dimensional �ag �apping in a free stream. Despite the instability of the problems considered
due to the sustained continuous oscillation of the �lament/�ag and the large solid �uid density ratio, the
results were comparable to those available in the literature. The present data, however, showed the strong
sensitivity of the results to the choice of the constant Kibm and the time step size in the numerical model.

The model is then extended for the study of the free �ag/rag motion inside a �uid domain. The results
highlighted the in�uence of the �ow pattern on the behavior of the �ag during its travel in the downstream
direction. This was evidenced by the symmetrical motion of the �ag in a free stream while large deformations
are observed when the �ag moves in the wake region of an obstacle.

Two di�erent collision models are considered in this work: a hard sphere like collision model and a
repulsive force collision model. The two methods are implemented for the study of �ag collision against the
side walls of the numerical domain and the results highlighted the importance of using a force like model
to avoid the penetration of the deformable object into the rigid wall. This collision force should take into
account the forces acting on the �ag in the �lm region between the rigid and deformable solid objects. Early
experimental results performed in an in-house water tunnel supports the observations noticed with the force
collision model for rag collision against the side walls of the water tunnel. For future works, the numerical
results for the free rag motion and collision will be compared against experimental data. The collision
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Figure 12: Instantaneous positions of the free moving �ag behind an obstacle at four di�erent instants labeled
from top to bottom as: 0, 1.26, 1.62, and 1.98.

model will also be extended to consider both the lubrication and the friction e�ects in the �lm region. More
complicated test cases analogous to what is happening inside waste water pumps will also be considered. To
conclude, the present results in this work have provided an initial work towards the study of rag motion and
clogging inside waste water pumps.
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Figure 15: Instantaneous positions of the free moving �ag passing through an obstacle inside the numerical
domain at di�erent instants labeled from top to bottom as: 0, 0.9, 1.26, 1.62, 1.98, 2.34, 2.7, and 3.24.
ρ = 0.05 and Kw = 0.1.
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