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1     Introduction 

With the development of the computational fluid dynamics (CFD), high order schemes have 
been widely employed for the direct numerical simulation (DNS) and large eddy simulation (LES) of 
flow fields with a broadband of length scales such as turbulence, aero-acoustics, etc. Comparing with 
finite volume schemes, finite difference schemes are more computational efficiency and are easier to 
achieve high order accuracy. It has been reported that for a three-dimensional turbulence problem, the 
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finite difference scheme costs one-tenth computational time comparing to the finite volume scheme 
with the same order of accuracy[1]. Moreover, the high order finite volume methods require multi-
dimensional reconstruction procedures while the finite difference schemes can be constructed in a 
dimension-by-dimension manner. Thus, the finite difference schemes are much easier to be 
implemented on a parallel processing computer. Therefore, high order finite difference schemes 
retrieve the favor of scientific researchers and have been widely developed since 1990s. These 
includes the compact schemes[2], the weighted compact nonlinear scheme (WCNS)[3] and the 
weighted essentially non-oscillatory (WENO) scheme in finite difference version[4], etc. 

However, finite difference schemes are usually derived on uniformly spaced grids in Castesian 
coordinates. When they are applied to general curvilinear coordinates, freestream preservation 
properties cannot be hold as the geometric conservation law (GCL) cannot be satisfied naturally. In 
this case, the geometrically induced errors degrade the fidelity and accuracy of the high order schemes 
or even cause numerical instabilities[5][6]. To eliminate or reduce such geometrically induced errors, 
special strategies should be adopted for the discretization of the metric terms to make the schemes 
fulfill the GCL. Besides, large computational time step will be allowed if a numerical algorithm 
satisfying GCL, which will save vast calculating resources [7]. 

In fact, GCL has been discussed for a long period. The concept was first proposed by Trulio and 
Trigger[8]. Pulliam and Steger[10] recognized that when the finite difference schemes are used to solve 
the three-dimensional strong conservative equations on curvilinear coordinates, errors will be 
introduced due to the discretization of the metrics terms. Thomas and Lombard[5] derived a 
conservative form of the metrics which are analytically equivalent and numerically consistent. By 
using the metric terms in conservative form, the geometrically induced errors are reduced in a large 
extent. Zhang et al. [9] pointed out that the GCL identities comprise two parts: the volume conservation 
law (VCL) and the surface conservation law (SCL). VCL is mainly responsible for the extra sources 
or sinks in the physically conservative media while the misrepresentation of the convective velocities 
will be caused if the SCL is not satisfied. For moving grids, many researchers have done a lot of work 
to satisfy the VCL. For example, Farhat et al.[11] proved that it was a necessary and sufficient 
condition for ALE methods to satisfy GCL in order to preserve the nonlinear stability of their fixed 
grid counterpart. Étienne et al.[7]and Mavriplis et al.[12] presented new approaches for ALE finite 
element methods to preserve freestream. Recently, Sjögreen et al.[13] proposed a systematic 
formulation of conservative metric discretization which satisfied GCL on moving grids. They 
discussed a wide class of temporal metric discretization and constructed multistage Runge-Kutta 
methods which satisfied the GCL identity. For the stationary curvilinear grids, the SCL identity is 
very important[9]. Many techniques for low-order schemes to satisfy SCL have been devised, such as a 
simple averaging and differencing method proposed by Pulliam and Steger[10] and a finite-volume like 
technique employed by Vinokur[6]. However, these methods just work well for schemes with second 
order accuracy. When they are employed for high order schemes, the effects are marginal. In order to 
make the high-order schemes satisfy GCL, Visbal and Gaitonde[14] carefully studied metrics induced 
errors and concluded that the errors can be largely decreased by a two-step procedures. Firstly, the 
conservative forms of the metric derivatives suggested by Thomas and Lambard[5] are used instead of 
their original forms. Secondly, the same numerical scheme is employed to calculate the metric 
derivatives and the flux derivatives. They successfully applied this approach to the linear central-type 
compact schemes. Nonomura et al.[15] extended this method to the nonlinear WCNS schemes and 
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showed excellent freestream preservation properties of these schemes. Deng et al [16] analyzed this 
methodology theoretically and presented a conservative metric method (CMM) for the high order 
schemes to satisfy SCL. They proved that CMM is a sufficient condition for SCL and can ensure the 
SCL for both the interior schemes and the near boundary schemes. In their paper, the finite difference 
schemes are categorized as central schemes (CS) and upwind schemes (UPS) based on the difference 
operators which are used for the computation of the flux derivatives. They concluded that CMM can 
be applied to CS but cannot be applied to UPS directly. Later, Deng et al.[17] further discussed the 
metrics terms by following the concept of vectorized surface and cell volume in finite volume 
methods. They found that the discretization of metrics terms in conservative form is identical with a 
linear combination of the vectorized surface and cell volume around the computational nodes. Based 
on these discussions, they proposed the symmetrical conservative metric method (SCMM) to 
calculate metrics and Jacobian. Similar idea was also shown by Abe et al.[18] who proposed a new 
analytical forms for the metrics and Jacobian which was called asymmetric conservative metrics. The 
sufficient condition of a linear high order finite difference scheme was derived by Abe et al.[19], for 
which the conservative metrics in discrete form satisfying the GCL identity on moving and deforming 
grids. Under the guidelines discussed above, lots of finite difference schemes which satisfy GCL have 
been newly devised[20][21]. 

Among various high order finite difference schemes, the WENO schemes are promising due to 
their high order accuracy and robust shock-capturing properties. However, it has been demonstrated 
that the standard finite difference WENO schemes cannot satisfy the GCL when they are directly 
employed in a body-fitted coordinates[15][22]. Specific treatments have to be done to make the WENO 
schemes hold freestream. Unfortunately, the CMM cannot be applied to WENO schemes as they fall 
into UPS due to Deng’s categories[16]. We further study the characteristic of the WENO scheme in the 
present paper and find that CMM cannot be used to WENO schemes owing to two reasons. Firstly, 
the difference operators 1  which are used for physical fluxes are related to the distribution of the 
flow field, i.e., they are nonlinear operators. Secondly, the flux operators 1  depend on the metric 
operators 2  which make it is impossible to design 2 1  . Jiang et al.[23][24] proposed an alternative 
finite-difference form of WENO (AWENO) scheme for freestream preservation. However, Asahara et 
al.[25] demonstrated that the AWENO scheme is analytically equivalent to a special case of WCNS 
which fall into CS. Nonomura et al.[26] proposed a new technique called WENO-FP scheme to 
preserve freestream for the standard finite difference WENO schemes. They divided the WENO 
scheme into two parts: a consistent central (linear) part and a numerical dissipation (nonlinear) part. 
For the linear part, the CMM approach can be directly adopted. For the nonlinear part, the metric 
terms are frozen for constructing the upwinding fluxes.  

In the present paper, a new numerical strategy is developed for the WENO scheme to satisfy the 
GCL. This method includes the following procedures. Firstly, the metric invariants are retained in the 
governing equations and the full forms of the transformed equations on the general curvilinear 
coordinates are solved. Secondly, the metric terms and the Jacobian are rewritten into the symmetrical 
conservative, analytically identical form[17][18]. Thirdly, the evaluation of any outer-level derivatives 
appearing in metric invariants is carried out by using an upwind-weighted averaging procedure. The 
characteristic-wise, fifth-order WENO scheme with Lax-Friedrich splitting is chosen as an example to 
shown the performance of the proposed methodology. The detailed formulations for the discretization 
of the metric invariants are explicit expressed. The effectiveness of this approach is validated by both 



4 
 

theoretical analysis and benchmark test cases. The extension of this technique to other nonlinear 
schemes is trivial. 

This thesis is organized as follows. In Section 2, the three-dimensional scalar conservation law is 
employed to briefly illustrate the headstream of the geometrical induced errors. Section 3.1 briefly 
reviews the WENO schemes on curvilinear coordinates. The reasons why standard WENO scheme 
cannot hold freestream are also expressed in detail in this section. A new methodology for the WENO 
scheme to preserve the freestream on stationary curvilinear grids is proposed in Section 3.2 and its 
extension to Euler and Navier-Stokes equations is given in Section 3.3. Section 4 describes some 
benchmark test cases to demonstrate the effectiveness of the proposed approach. The conclusions are 
given in Section 5.  
2     General theory 

2.1     Governing equations and coordinate transformations 
In Cartesian coordinates  , , ,x y z t , the three-dimensional scalar conservation law can be written 

as  
       0t x y zu f u g u h u    , (1) 
where u is a conservative variable while f , g and h are its fluxes. The subscripts denote the partial 
derivatives. For example, tu denotes the partial derivative u t  . When the flow fields around an 
arbitrary body shape are simulated by finite difference schemes, Eq.(1) is usually transformed into 
general curvilinear coordinates  , , ,    by using the following relationships 
      , , , , , , , , ,t x y z t x y z t x y z t          . (2) 
After transformation, Eq.(1) can be expressed as[27] 
 u f g h R          , (3) 
where 
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In Eq.(4), the Jacobian1 J and the traditional standard metrics are defined as  
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R in Eq.(3) is known as the metric invariants of the transformation. Its detailed formulation can be 
expressed as 



5 
 

 t x y zR I u I f I g I h    , (6) 
where  
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If the metrics relations in Eq.(5) are substituted into Eq.(7), each term of the metric invariants R  
proves analytically to be zero. Therefore, R is often discarded in the practical simulation. In this case, 
Eq.(3) results in the strong conservation form of the governing equations 
 0u f g h         . (8) 

2.2     Geometrical Conservation Law  
If a uniform flow is considered, Eq.(8) can be simplified as  

    1t x y ztu u I J I f I g I h         . (9) 
It is straightforward to see that if  
 0tI   (10) 
and  
 0x y zI I I    (11) 
hold, any uniform flow is the solution of Eq.(8). As previously discussed by Zhang et al.[9], 0tI   
denotes VCL while 0x y zI I I    represents SCL. In the present paper, the time-constant grids are 
considered, thus VCL is satisfied automatically. In this case, the metric invariants R  change to be  
 x y zR I f I g I h   . (12) 
Although SCL identity is analytically true, it may be broken numerically when improper derivative 
operators are employed to discrete the metric terms. The violation of the SCL identity brings extra 
errors which can lead to numerical inaccuracy, instabilities, or even cause the simulation failure. To 
settle this problem, Thomas and Lombard[5] firstly suggested the following conservative forms of the 
metrics S1 instead of their original form: 
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Hence, the numerical value of xI  can be written as  
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where the superscript “ N ” denotes the numerical value. 1 , 2  and 3  are numerical derivative 
operators which are employed to calculate the corresponding level of the metric terms. Deng et al.[16] 
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verified that 0xI   can be maintained numerically when the following conditions are satisfied. That 
is  
 1 2 1 2 1 2 1 2 1 2 1 2,  ,                           . (15) 
According to these conditions, they developed CMM to make the finite difference schemes satisfy 
SCL. The essential idea of the CMM includes that (1) the conservative form of the metric terms, 
Eq.(10), are employed for the metric calculation and (2) the derivative operator 2  is the same with 

1  which is used for the flux discretization in the same coordinate direction. When 1  is a linear 
operator, CMM can be implemented straightforwardly. Thus, this approach is successfully used in the 
linear schemes or some of the nonlinear schemes (such as WCNS) in which 1  is a linear operator. 
However, it is quite difficult or even impossible to use CMM to the WENO schemes owing to the 
following two reasons: (1) As noted by Deng et al., 1  is a nonlinear operator in WENO schemes; (2) 
More importantly, 1 depends on 2  which makes it is impossible to design the operator 2 1  . 
Detailed discussions about this point are shown in the following section and a numerical approach to 
make the WENO schemes hold freestream on the stationary grids is thus devised. 
3     A methodology for WENO schemes holding freestream 

3.1     Analysis for the WENO schemes 
The semi-discrete approximation of the governing equations in strong conservation form, Eq.(8), 

can be written as  
  1 , , 1 , , 1 , ,

, ,
i j k i j k i j k

i j k

u f g h    
       
   . (16) 

where 1
 , 1

 and 1
 are different derivative operators in   ,  and   direction respectively. 

Suppose 1        on the computational mesh, then 1 , ,i j kf  can be expressed as 
 1 , , 1 2, , 1 2, ,ˆ ˆi j k i j k i j kf f f    , (17) 
where 1 2, ,î j kf   and 1 2, ,î j kf  are the numerical fluxes computed by the WENO schemes. Without loss of 
generality, the fifth order WENO scheme with Lax-Friedrichs flux splitting approach is employed in 
the present paper to derive the difference operator 1

 . Firstly, the upwinding flux if  (the 
subscript j , k are omitted for brevity where there is no ambiguity in this subsection) and the 
downwinding flux if  are split at the grid points. That is 
  1

2i i if f u     , (18) 
where  is taken as  
  maxu f u     (19) 
over the relevant range of u . Then the numerical flux can be computed by  
 2

1 2
0

î k k
k

f q   
 , (20) 

where kq is a third-order approximation of the numerical flux on the k th stencil. Their detailed 
formulations are 
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k  are the nonlinear weights corresponding to the stencil k . For 0,1,2k  , 
 2
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where kC  are the ideal weights and their corresponding values are  
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k  are the smoothness indicators of the k th stencil and   is a small positive parameter which is 
usually chosen to be 610  . By using Eq.(20) ~ Eq.(23), the numerical flux 1 2îf  can be obtained. 
That is  
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Then the derivative operator 1
  can be explicitly expressed as  
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ˆ ˆ
1 3 1 1 3 1 1 1 1
6 4 12 12 2 2 6 2 6

11 1 1 1 1 11 1 1 1 1 3
12 4 4 4 4 12 6 2 6 2 2

i i i

i i i

i i

f f f
f f f

f f


        

          

 
          

          

 
                         

                  



  

 

2 2 1 2 3 2

3 0 2 0 1 0 1 0 1 2 0 1

0 1 2 0 1 2

1 1 3 1
12 12 4 6

1 3 1 1 3 1 1 1 1
6 4 12 12 2 2 6 2 6

11 1 1 1 1 11
12 4 4 4 4 12

i i

i i i

i i

f f

u u u

u u

   
           
       

    

          

      


             
                         
         

 

  

  1 1 2 0 1 2

2 2 1 2 3 2

1 1 1 1 3
6 2 6 2 2

1 1 3 1
12 12 4 6i iu u

    
     

    

    

      
               

. (25) 

If we introduce the translation operator in  direction 
  , , , ,i j k i j kE     (26) 
and define  
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     
       
     

, ,
3 , , 0 3 , , 3 , ,

, ,
2 , , 0 1 2 , , 2 , , 0 2 , ,

, ,
1 , , 0 1 2 1 , , 1 , , 0 1 1

1 06
3 1 1
4 12 12

3 1 1 1 1
2 2 6 2 6

i j k i j k i j k

i j k i j k i j k i j k

i j k i j k i j k

w E w
w E w E

w E w E

  

   

  

   
      
       

    

       

         

  
           
                 

       
       
 

, ,

, ,
0 , , 0 1 2 0 , , 0 , , 0 1 2 0 , ,

, ,
1 , , 1 2 1 , , 1 , , 0 1 2 1 , ,

,
2 , , 2

11 1 1 1 1 11
12 4 4 4 4 12
1 1 1 1 3
6 2 6 2 2

1
12

i j k

i j k i j k i j k i j k

i j k i j k i j k i j k

i j k

w E w E

w E w E

w



   

   




         
        
 

       

      

 

              
             

       
     

,
2 , , 2 , , 1 2 2 , ,

, ,
3 , , 3 , , 2 3 , ,

1 3
12 4

10 6

i j k i j k i j k

i j k i j k i j k

E w E

w w E

  

  

    
   

  

  

           
     

 ,(27) 

the derivative operator 1
 can be rewritten as  

    3 , ,
1 , , , , , , , , , ,

3
i j k r i j k i j k r i j k i j k

r
f w f u w f u     


         . (28) 

From above discussions, it can be clearly observed that 1  is a nonlinear operator as the nonlinear 
weights k  depend on the flow variables. Moreover, if we want to obtain 1 , the difference operator 
for the metric terms, i.e., 2  in Eq.(14) should be known first. In other words, we should calculate 2  
before we compute 1 . However, when we choose a different 2  in the practical implementation, we 
obtain a different 1  because the nonlinear weights k  are function of the numerical values of the 
metric terms, which indicates the flux operator 1  depends on the metric operator 2  for the WENO 
schemes. Therefore, it is impossible to design 2 1   and thus the CMM approach cannot be applied 
to the WENO schemes directly. However, if Eq.(3) instead of its strong conservative form Eq.(8) is 
solved by using WENO schemes, freestream preservation properties can be hold by proper 
discretization of the metrics invariants R . The detailed illustrations are given in the following 
subsection. 

3.2     An approach on WENO schemes for freestream preservation 
If a uniform flow is taken into consideration, i.e., , , ,u f g h  are constants over the flow fields. (It 

should be noted that , , ,u f g h    may be not constants due to the discretization errors of the metric 
terms.) By substituting Eq.(4) into Eq.(28), we obtain 

 

3 , ,
1 , ,

3 , , , ,
3 , ,

3 , , , ,
3 , ,

3 , , , ,

,
, ,

1

x xi j k r r
r i j k i j k

y y
r r

r i j k i j k

z zr r
r i j k i j k

r r
i j k

f f w wJ J
g w wJ J
h w wJ J

u w wJ

  

 

 

 

 
 

 



 


 


 




              
              
              

    







3 ,
3 , ,

1
r i j kJ




       

. (29) 

In this case, Eq. (16) can be explicitly expressed as  
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3 3 3, , , , , ,

3 3 3, , , , , , , , , , , , , ,

,

x x x x x xr r r r r r
r r ri j k i j k i j k i j k i j k i j k i j k

y
r

u f w w w w w wJ J J J J J

g w J

     



     




     
  



                                                                       


  

3 3 3, , , , ,
3 3 3, , , , , , , , , , , ,

, ,
, ,

y y y y y
r r r r r

r r ri j k i j k i j k i j k i j k i j k

z zr r
i j k i

w w w w wJ J J J J

h w wJ J

    

 

    

 

    
  

 

                                                              
          

  
3 3 3, , , ,

3 3 3, , , , , , , , , ,

, , ,
, , , , ,

1 1 1

z z z zr r r r
r r rj k i j k i j k i j k i j k

r r r
i j k i j k i

w w w wJ J J J
u w w wJ J J

   

  

   



   
  

  

                                                 
                     

  
3 3 3, , ,

3 3 3, , , , , , ,

1 1 1
r r r

r r rj k i j k i j k i j k
w w wJ J J
    

  

                                    

. (30) 

where ,
rw  and ,

rw  are the operators in  and  direction respectively. For example, when 3r   , 
,

rw  can be expressed as  
      , ,

3 , , 0 3 , , 3 , ,
1 06i j k i j k i j kw E w             (31) 

where 3E  is the translation operator in    direction 
  , , , ,i j k i j kE    . (32) 

It is obvious that Eq.(30) cannot ensure 0u     for an arbitrary uniform flow owing to the 
discretization errors of the metric terms. However, if Eq.(3) instead of Eq.(8) is solved and the metric 
terms xI , yI and zI in R are discretized by  

 

  3 3 3, , , , , ,
, , 3 3 3, , , , , , , , , , , ,

,
, ,

N x x x x x xx r r r r r ri j k r r ri j k i j k i j k i j k i j k i j k

r
i j k

I w w w w w wJ J J J J J
u wf

     



     



     
  



                                                               
    

  

 
3 ,

3 , , , ,

, , , , , ,
, , , , , , , , , , , , , ,

1 1
r

r i j k i j k

N y y y y y y
y r r r r r ri j k i j k i j k i j k i j k i j k i j k

wJ J

I w w w w w wJ J J J J J



          




     

                  
                                                  



 

3 3 3

3 3 3

3 , ,
3 , , , ,, ,

, , , ,
, , , , , , , ,

1 1
r r r

r r
r i j k i j ki j k

N z z z zz r r r ri j k i j k i j k i j k

u w wg J J
I w w w wJ J J J

 

   


   

  

 


   

         
                         

                         

  


3 3 3 , ,
3 3 3, , , , , ,

3 , ,
3, , , , , ,

1 1

z zr r
r r ri j k i j k i j k

r r
ri j k i j k i j k

w wJ J
u w wh J J

 

 

 



 
  

 


                              
                         

  
 , (33) 

the discretization error of the fluxes can be exactly offset by the discretization error of R . Therefore, 
0u     is true for any uniform flow and the WENO schemes preserve the freestream. 

Remark 1: It should be noted that for this technique, the numerical values of xI , yI and 
zI cannot be guaranteed to be zero. However, when the freestream is imposed, the numerical errors 

induced in the discretization of the fluxes are exactly equal to the numerical value of the metric 
invariants. Thus, the geometrically induced errors are offset by the disctetization of the metric 
invariants and 0u    holds for any uniform flow. 

Remark 2: Theoretically, when the same numerical value of the metric terms such as 
x J , y J and z J are employed for the discretization of the physical fluxes and the metric 

invariants, 0u    is achieved. In other words, whether the conservative forms of the metric terms 
are chosen or not have no effects on the freestream preservation properties of the WENO schemes for 
this technique. However, our experiences show that it is a smart choice to choose the metric terms in 
conservative forms.  

Remark 3: After the conservative forms of the metric terms are chosen, the numerical values of 
the metric terms should be computed before Eq.(33) is employed. In other words, 2 and 3  in Eq. 
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(14) should be computed numerically before Eq.(33) is carried out. Although there is no restriction on 
the chosen of 2  and 3 , the same high order schemes are chosen for 2  and 3  in the present paper.  

According to above discussions, the proposed approach of the present paper can be summarized 
as follows: 

(1) The metric invariants R  are retained in the governing equations, i.e., Eq.(3) is solved instead 
of the strong conservation form of the governing equations; 

(2) The symmetrical conservative form of the metrics are employed[16][18]. That is  
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, (34) 

where the superscript “S1” denotes Eq.(13) while the superscript “S2” represents its symmetrical form: 
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The symmetrical conservative form of the Jacobian 1 J  can be written as 

 
     
     
     

11 3
x y z

x y z

x y z

x J y J z J
J x J y J z J

x J y J z J







  
  
  

                   

. (36) 

(3) Eq.(33) is employed to compute the outer-level partial derivatives in R . In other words, R is 
discretized by 
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By using this approach, it is clear that when the uniform flow is imposed, the discretization 
errors of the fluxes can be exactly offset by the discretization of the metric invariants and the 
freestream is thus preserved. 

This approach can be easily extended to other WENO schemes. For the WENO schemes with 
Roe-type splitting, the upwinding and the downwinding fluxes at the grid points can be written as  
  1 sgn2i i if f f       , (38) 
where f u     and  sgn  is the signal function with 
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In this case, xI can be computed by 
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for the WENO schemes with Roe-type splitting holding freestream. yI and zI can be obtained in a 
similar way. 

3.3     Extension to the Euler and N-S equations  
In this subsection, this approach is extended to solve the Euler and Navier-Stokes equation. The 

three-dimensional, unsteady, compressible Euler equations are employed for the illustrations. In 
general curvilinear coordinate systems, they can be expressed as 
    τ ξ η ζU F G H R    , (41) 
where U are the conservative variables, F , G and H are the inviscid fluxes. Their detailed 
formulations can be founded, for example, in [14]. The metric invariants R  on the stationary grids 
can be written as  
 x y zI I I  R F G H , (42) 
where F , G and H  are the inviscid fluxes in the Cartesian coordinates. When the scalar WENO 
schemes are extended to solve Euler equations, there are in general two ways: The component-wise 
WENO schemes and the characteristic-wise WENO schemes. We take xI  as an example to illustrate 
the discretization process of R  in the following section for these two types WENO schemes 
respectively.  

(1) The component-wise WENO schemes. For the component-wise WENO schemes, we 
compute the numerical fluxes using the scalar WENO schemes for each component of U  separately. 
The Lax-Friedrichs approach is also employed for the flux splitting 
  , , , , , ,

1
2i j k i j k i j k  F F U   , (43) 

where the constant   is taken as  
   1 5max max pp   u u


 . (44) 

In Eq.(44),  p u are the eigenvalues of the Jacobian   A F U  . The maximum is taken over the 
relevant range of U . Then the difference operator 1

  for any component of the inviscid flux F  can 
be written as  
    3 , ,

1 , , , , , , , , , ,
3

p p p p p
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r
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where , ,
p

i j kF and , ,
p

i j kU is the p th  component of , ,i j kF  and , ,i j kU  respectively.  
From above discussions, it can be observed that the metric invariants should be computed in a 

component-by-component fashion. For example, the numerical value of xI  for the p th  component 
of the conservative variables can be expressed as  
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(2) The characteristic-wise WENO schemes. Taking the computation of the difference 
operator 1

 for the p th  component of the inviscid flux , ,i j kF as an example, the detailed procedure 
involves the following steps. (Note the subscript j and k are omitted for brevity where there is no 
ambiguity.) 

a) At each fixed 1 2i  , the average state of the conservative variables U  and the inviscid fluxes 
F  are determined by the simple arithmetic mean 
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or the Roe average. 
b) The left eigenvectors  1 2 1 ~ 5p

i p L and the right eigenvectors  1 2 1 ~ 5p
i p R  of the 

matrix   A F U   are computed at the average state.  
c) The left eigenvectors  1 2 1 ~ 5p

i p L are employed to project the conservative variables and 
the inviscid fluxes into the characteristic space on the corresponding stencil of the WENO schemes. 
The resulting characteristic variables are  
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, (48) 
where the superscript “ p ”denotes the p th component of the characteristic variables. 

d) The flux splitting is carried out in the characteristic space. When the Lax-Friedrichs flux 
splitting approach is used, we obtain  
  , 1

2
p p p
m m mw w    , (49) 

where   is given by Eq.(44). 
e) Perform the scalar WENO schemes for each component of the characteristic variables to 

obtain the corresponding numerical flux 1 2ˆ p
iw  . That is  

    3
1 2

2
ˆ p p p p p

i r r i i r r i i
r
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where 
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and rE  is the translation operator in  direction defined by Eq.(26). 
f) At last, we transform the flux 1 2ˆ p

iw  back into physical space by  
 5 ,

1 2 1 2 1 2
1

ˆ ˆp p q q
i i i

q
F R w  

  , (52) 
where 1 2ˆ p

iF  is the p th component of the numerical fluxes. 
Substituting Eq.(48)~Eq.(50) into Eq.(52), 1 2ˆ p

iF  can be finally expressed as  
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where sU and sF are the s th component of U and F respectively. If uniform flow is considered, the 
numerical flux can be simplified to be 
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where sU , sF , sG and sH are the s th component of U , F , G and H  respectively. 
If we define 
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, (55) 

the numerical flux can be rewritten as 
 1 2

1ˆ yp x zi F G G U
iii i

F w w w wJ J J J
    


                        , (56) 

In this case, the difference operator 1
  for the p th  component of F  can be written as  
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
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   


 
 

 

 

 
                    
                    



   

   

, (57) 

Thus, p
xI  1~ 5p  can be computed by  

   , , 1, , , , , 1,

, , 1, ,, , , , 1

1
1 1

x x x xF F F F
N i j k i j k i j k i j kp

x p
x xF F U U

i j k i j ki j k i j k

w w w wJ J J JI F w w w wJ J J J

   

   

   
 

 



                                                     

   

   

, (58) 

for the characteristic-wise WENO schemes holding freestream. In Eq.(58),   , ,F i j kw   
and   , 1,F i j kw   are defined as 
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  
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 
, (59) 

where rE  is the translation operator in   direction defined by Eq.(32). 
4     Numerical tests 

Mesh nonuniformity and nonorthogonality are the major source of geometrically induced errors. 
Especially in the place where the highly distorted grids or density mutational grids exist, the 
geometrically induced errors will degrade the fidelity and accuracy of the high order schemes or even 
cause numerical instabilities. Although we try to generate smooth grids and preserve the 
computational mesh uniform, grids with distortion and spacing variation are unavoidable in order to 
fit complex figurations in practical simulations. Therefore, several benchmark test cases which 
include a uniform flow, an isentropic moving vortex, the double Mach reflection problem and the 
Rayleigh Taylor instability problem are implemented on various nonuniformity and nonorthogonality 
grids to assess the freestream preservation properties of the proposed approach. The fifth-order, 
characteristic-wise WENO scheme with Lax-Friedrichs flux splitting is employed for the space 
discretization while the third order TVD Runge-Kutta scheme is applied for the time integration. The 
effectiveness of the strategy is verified by comparing the computational results with those of other 
schemes. In the following section, the mark “WENO” denotes the standard WENO scheme[4], 
“WENO-FP” represents the technique proposed by Nonomura et al.[26], “WENO-Like” stands for the 
WENO schemes with the proposed strategy proposed in the present paper while “Exact” denotes the 
exact value of the flow fields. 

4.1     Uniform flow 
A two-dimensional uniform flow is discussed in this subsection. The initialization conditions of 

the flow are 
 ,  0,  u U v p p      
with 10U   and 143p  . 
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Firstly, we test the performance of various schemes on two-dimensional distortion-shaped grids 
as shown in Fig.1. The computational domain is    50,50 50,50    and grid number is set to be 
100 100 . The mesh is bended at    40,40 40,40    and it is generated by 
    , min 1 sin / /i jy y y j A n x L j JL         , (60) 
where ,i jy  is the ordinate value of the point  ,i j  and min 40y    is the initial location of the bended 
grids. 100L  is the length of the computation domain. JL denotes the mesh number in   direction 
and y L JL  represents the grid space before distortion. A , n and   are the parameters to control the 
distortion extent and the bending pattern. They are set to be 0.5A  , 12n  and 3 2  respectively 
in the present test case.  

  
(a) The whole computational domain (b) Enlarged portion of the mesh 

Fig. 1 Two-dimensional distortion-shaped grids 
Comparisons of the computational results at 0.5t   for various schemes on the two-dimensional 

distortion-shaped grids are depicted in Fig.2 and Fig.3. Fig.2 shows the pressure contours while Fig.3 
presents the distribution of velocities along the central axis and the accumulated 2L error of the u  
velocity. It can be clearly noticed that for the traditional WENO scheme, significant errors appear due 
to the nonuniformity of the mesh and the freestream can not be preserved. The WENO-FP scheme 
reduces the geometrical induced error at a certain extent while the WENO-Like scheme achieves 
satisfactory results on this distortion-shaped mesh. Fig 3 denotes that the traditional WENO scheme 
has large velocities errors in the places with poor quality grids while the WENO-Like scheme has 
errors less than 2410 , close to machine zero for double-precision computations, which demonstrates 
that the new strategy can exactly preserve the uniform flow for the distortion-shaped grids.  
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(a) Exact (b) WENO 

  
(c) WENO-FP (d) WENO-Like 

Fig. 2 Pressure contours of the uniform flow on the two-dimensional distortion-shaped grids 
 

  
(a) u  velocity distributions along the central 

line of the computational domain 
(b) v  velocity distributions along the central line 

of the computational domain 
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(c) The 2L  error of the u velocity 

Fig. 3 Comparisons of the numerical results on the two-dimensional distortion-shaped grids 
Next, the freestream preservation properties of the WENO-like scheme are validated on wavy 

grids as shown in Fig.4 (a). The two-dimensional wavy grids are generated by 
     

    , min min

, min min

1 cos
1 cos

i j

i j

x x x i A n y y
y y y j A n x x




       
       

,  

where the parameters are chosen to be 3,  =0.1A n . The computational results at 0.5t   on 
100 100 grid points are shown in Fig.4(b)~ Fig.4(d). For the wavy grids, both the WENO-FP scheme 
and WENO-like scheme give inspiring results while the numerical errors of WENO scheme are 
comparably large. When we compare the 2L  errors of the u  velocity for the WENO-FP scheme and 
WENO-like scheme as shown in Fig.4(b), the WENO-Like scheme gives a slightly better results.  

  
(a) Grids (b) The 2L  error of the u velocity 
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(c) u  velocity distributions along the central line 

of the computational domain 
(d) v  velocity distributions along the central line 

of the computational domain 
Fig. 3 Comparisons of the numerical results on the two-dimensional wavy grids 

Randomly disturbed grids are chosen to further study the properties of the proposed strategy. The 
distributions of the randomized grids are expressed by 
      

     , min

, min

1 mod , 2 _
1 mod , 2 _

i j

i j

x x x i A x i random number i
y y y i A y j random number j

      
       ,  

where  _random number i and  _random number j are random numbers which vary with i  and j  
respectively. 0.9A  is a constant to control the extent of the distortion. The computational domain is 
chosen to be    50,50 50,50    while the random grids are set at the region    40,40 40,40    as 
shown in Fig.5.  

  
(a) The whole computational domain (b) Enlarged portion of the mesh 

Fig. 4 Two-dimensional randomized grids 
The simulation is implemented on a computational mesh with 100 100  grid points and the 

results at 0.5t   are shown in Fig.6. These figures demonstrate that results of the WENO scheme 
have significant errors. Although the results of the WENO-FP scheme are improved compared with 
that of the WENO scheme, the numerical errors of the velocities are still comparably large. In 
comparisons, the velocities obtained by WENO-Like scheme are almost the same with the exact ones. 
These reconfirms that the new strategy can preserve the freestream exactly on various grids, which is 
consistent with the theoretical analysis in Section 3. 
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(a) u  velocity distributions along the central 

line of the computational domain 
(b) v  velocity distributions along the central line 

of the computational domain 

 
(c) The 2L error of the u velocity 

Fig. 6 Comparisons of the numerical results on the two-dimensional randomized grids 
4.2    Moving vortex 

In this subsection, the two-dimensional and three-dimensional isentropic moving vortex, which 
is too weak to bear any relatively large error, are employed to assess the performance of the proposed 
strategy. An isentropic vortex with freestream Mach number 0.05 located at    , 0,0c cx y  is chosen 
as the initial conditions. The velocity and pressure distributions of this vortex are expressed as  

 

 
 

 

2
2

2
2

2 2
2

2 2
2

exp / 2 ,
exp / 2 ,  

exp / 2 ,2
 ,

Cyu U rR
Cxv rR

Cp p rR
x yr R







  
 
  



  

where 10U  , 2C  and 10R  . 
This vortex is first computed on the two-dimensional distortion-shaped grids as shown in Fig.1 

to assess the vortex preservation properties of various schemes. The simulation is carried up to 0.5t   
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with 100 100  grid points. Contours of vorticity are shown in Fig.7. The vortices computed by the 
standard WENO scheme and the WENO-FP scheme are completed covered by the geometrically 
induced errors, whereas the WENO-Like scheme can preserve the vortex well. 

  
(a) Exact (b) WENO 

  
(c) WENO-FP (d) WENO-Like 

Fig. 5  Contours of vorticity for the moving vortex on two-dimensional distortion-shaped grid 
Next, the vortex preserving properties of various schemes on the two-dimensional wavy grids are 

examined. The wavy grids employed for this test case is the same with that for the uniform flow as 
shown in Fig.4(a). The corresponding results at 0.5t   are depicted in Fig.8. These figures 
demonstrate that the vortex computed by the standard WENO scheme has comparably large error due 
to the grid distortion, whereas the vortices computed by WENO-FP scheme and WENO-Like scheme 
are preserved well compared with the exact solutions. 
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(a) Exact (b) WENO 

  
(c) WENO-FP (d) WENO-Like 
Fig. 6 Contours of vorticity on the two-dimensional wavy grids 

To further study the performance of the WENO-Like scheme on three-dimensional non-uniform 
grids, the computation of the moving vortex problems is carried out on the three-dimensional space-
varying grids as shown in Fig.9. The grids are generated by 

 
   
   
   

, min

, min

, min

1 sin /
1 sin / ,
1 sin /

i j

i j

i j

x x x i A n x L
y y y j A n y L
z z z k A n z L





    
    
    

  

where 2,  2A n   and 20L  . The computation region is chosen to be      40,40 40,40 20,20      and the simulation is carried out up to 0.3t  with 80 80 40   grid 
points. Comparisons of the vorticity Contours for the WENO scheme and the WENO-like scheme are 
shown in Fig.10. It can be clearly observed that the WENO-Like scheme performs well on this three-
dimensional space-varying mesh while significant geometrically induced errors cover the real vortex 
for the standard WENO scheme. 
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(a) The whole computational domain (b) Local slice of the mesh 

Fig. 7 Three-dimensional space-varying grids 

   
(a) Exact (b) WENO (c) WENO-Like 

Fig. 8 Comparisons of vorticity contours on the three-dimensional space-varying grids 
4.3     Double Mach reflection problem 

Double Mach reflection problem is chosen to examine the performance of the WENO-Like 
scheme when strong shock waves appear in the flow fields. This problem is solved on a two-
dimensional randomized mesh with the computational domain      , 0,4 0,1x y   . The initial 
conditions are given by  
   1.4,0,0,1.0 1 6 3 3, , , 8.0,7.1447, 4.125,116.5 otherwise

x yu v p      .  
The solution is advanced up to 0.2t  with the grid points 400 100 . The Courant number is set to be 

0.3CFL  in the present study. More detailed discussions of this problem can be found, for example, 
in [27]. The grids are generated by the following equations 
      

     , min

, min

1 mod , 2 _
1 mod , 2 _

i j

i j

x x x i A x i random number i
y y y i A y j random number j

     
     




,  
where A is the coefficient to control the randomness of the grids. Two different random grids with 

0.1A   and 0.5A   is chosen in the present paper. As the parameter A becomes larger, the 
nonuniformity of the grids becomes more severe. Comparisons of the corresponding density contours 
for these two grids are shown in Fig.11 and Fig.12 respectively. It can be observed that all the 
schemes can capture the main features such as the Mach stem and the wall jet. However, it is evident 
that large non-physical oscillations appear for the standard WENO scheme. Especially for the 
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case 0.5A  , the roll up structures of the Kelvin-Helmholtz instability of the slip-line are completely 
polluted by the non-physical oscillations as shown in Fig.12(b). Both the WENO-FP scheme and the 
WENO-Like scheme can alleviate these non-physical oscillations. When we compare the results of 
WENO-Like scheme with those of the WENO-FP scheme, it is obvious the WENO-Like scheme can 
suppress the oscillations more evidently and thus better results are obtained.  

  
(a) Grids (b) WENO 

  
(c) WENO-FP (d) WENO-Like 

Fig. 9 Density contours on two-dimensional randomized grids with 0.1A   

  
(a) Grids (b) WENO 

  
(c) WENO-FP (d) WENO-Like 

Fig. 10 Density contours on two-dimensional randomized grid with 0.5A   
5     Conclusions 

In the present paper, a new numerical strategy for the high order WENO scheme holding 
freestream on nonuniformity and nonorthogonality grids is proposed. Firstly, we briefly review the 
coordinate transformation process and the headstream of the geometrical induced errors. Then the flux 
difference operators of the WENO scheme for the three-dimensional scalar equations are explicitly 
deduced. Based on the analysis of the WENO operators, we reconfirm the traditional WENO schemes 
cannot adapt other approaches to satisfy the GCL mainly because the flux discretization operators are 
nonlinear ones which depend on the difference operators for the metric terms. In order to make the 
WENO scheme hold freestream, we propose a numerical approach which includes the following steps: 
(1) The metric invariants in the governing equations are retained and the full forms of the N-S 
equations on the general curvilinear coordinates are solved; (2) The metric terms are rewritten into the 
symmetrical conservative form and are discretized by using high order schemes; (3) The evaluation of 
any outer-level derivatives in geometric invariants is executed by using an upwind-weighted 
averaging procedure, i.e., the outer-level derivative operators for the metric invariants are kept the 
same with those for the corresponding inviscid fluxes. This approach is remarked as WENO-Like 
scheme in the present paper. The fifth-order WENO scheme with Lax-Friedrich flux splitting for the 
scalar equations is chosen as an example to derive the detailed formulations for the discretization of 
the metric invariants. Then this approach is extended to solve the Euler and N-S equations by using 
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the component-wise and character-wise WENO schemes. The effectiveness of this approach is 
validated by implementing several benchmark test cases on various nonuniform grids. Numerical 
results indicate that when the computational mesh is smooth, both the WENO-FP scheme developed 
by Nonomera et al. and the proposed WENO-Like scheme can give satisfactory results. However, 
when the computational mesh is not smooth, i.e., the distortion-shaped grids and the randomized grids 
appear in the computational domain, the performance of the WENO-Like scheme is much better than 
that of WENO-FP scheme. 
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