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Abstract: This paper presents novel results in the application of the ENATE procedure
to the Navier Stokes equations in 1D. ENATE procedure can deal with sources of various
kinds, in particular, discontinuous sources (with discontinuous derivatives of any order) or
even sources of delta Dirac type. It always provides solutions of very high accuracy with
relatively few nodes compared to other high-precision schemes whose performance is very
much dependent on the particular numerical example chosen.
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1 Introduction

There are plenty of physical phenomena governed by transport equations. This kind of Partial
Di�erential Equations (PDE) appears in many branches of science, in particular Fluid Mechanics.
The values that certain variable attains in the domain are those that satisfy a balance between
convection and di�usion processes and source, if any. Exact solutions of these equations are di�cult
to obtain, normally requiring assumptions on the coe�cients, so in order to know the problem one
has to resort to numerical techniques that provide an approximate solution.

A wide choice of numerical schemes to obtain the �ow �eld, have been developed along the years
such as �nite di�erences, �nite elements, �nite volumes, or spectral. Although these approaches get
the numerical solution in a relatively short time, a lot of neighbour data1 needs to be handled for
precise results. For a standard discretization it is worth pointing out that none of these methods
uses the solution of the ODE that can be obtained if the multidimensional PDE is integrated over
an interval along a given coordinate. As a result of this integration the PDE converts into an
nonhomogeneous �rst-order ODE whose solution can be written in terms of its homogeneous and
particular solutions via the general theory of �rst-order ODEs. The ENATE procedure has shown
to provide very accurate and robust solutions to problems governed by transport equations of any
kind [1, 2] with a very narrow computational molecule of only three points. The �rst application
of this procedure was presented at the 6th ICCFD International Conference in Saint Petersburg in
2010. Since then an ample set of di�erent applications has shown that the accuracy with very few
nodes is higher than state-of-the-art high-order discretizations. ENATE uses the exact solution of

1CFDers employ the word "computational molecule" to denote the discrete neighbour points algebraically related

to a generic internal node.
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the second-order Ordinary Di�erential Equations (ODE) (1) to derive an algebraic equation between
nodes whose coe�cients are integrals in a unity domain of reference.

d

dx

(
ρu(x)φ− Γ(x)

dφ

dx

)
= S(x) (1)

For several dimensions the derivatives in other directions are required to be treated as pseudo-
source. Apart from the �rst application of ENATE to the 1D Navier-Stokes equations presented
in this paper, work is underway to extend ENATE to multidimensional problem along di�erent
approaches.

The paper is organized as follows; in Section 2 a brief review of the mathematical model [1, 2]
is written down and in Section 3 the problem and the equations to be discretized are presented. In
Section 4 some test cases are assessed and their numerical results plotted to show the performance
of ENATE. Lastly, conclusions are provided in Section 5.

2 Theoretical Background

ENATE approach for the 1D convection-di�usion equation uses the integral solution of Equation
(2) in normalized variables, Equation (3), for later making up an algebraic equation with the nodal
values of the discretized problem. The domain is split in N intervals which may be equal length
or not, and N + 1 nodes with locations xi, i = 0, ..., N , with two nodes at the boundaries, x0 and
xN . lb and rb stands for left boundary and right boundary respectively. A normalized coordinate x̂
is chosen as independent variable by considering a mapping between the working interval of length
L = xrb−xlb, and a unity domain, x = xlb +Lx̂, 0 6 x̂ 6 1, x ∈ [xlb, xrb]. The normalized equation
is

d

dx̂

(
ρ̂υφ̂− Γ̂

PL0

dφ̂

dx̂

)
= − φlb

∆φ

dρ̂υ

dx̂
+ Πs with Πs =

S(x̂)L

(ρυ)lb∆φ
(2)

φ̂ =
φ− φlb
φrb − φlb

=
φ− φlb

∆φ
; ρ̂υ =

ρυ

(ρυ)lb
; Γ̂ =

Γ

Γlb
; PL0 =

(ρυ)lbL

Γlb
; λ̂ =

ρ̂υ

Γ̂
(3)

By the well-known mathematical theory of ODEs, one can split the complete solution into a

homogeneous part φ
N

(x̂) and a particular part F (x̂) in such a way that the complete solution takes

the expression φ̂ = F (x̂) + (1− F (1))φ
N

(x̂).
The link between two successive intervals is the value of the di�usive �ux at the shared edge.

This �ux should be equal considering the edge to belong to either interval. The di�usive �ux at a
generic node P is calculated by considering it as the end point of one interval, WP , between the
W est node and P , or the start point of the next one, PE, between P and the East node. The �nal
algebraic equation is as follows:[

(ρυ)W k̃WP + (ρυ)P

(
k̃PE +

ILE01

IGE01

∣∣∣∣
PE

)]
φP =

(ρυ)W

(
k̃WP +

ILE01

IGE01

∣∣∣∣
WP

)
φW + (ρυ)P k̃PE φE

+ IS01|WP

+

(
ISGE01

IGE01

∣∣∣∣
PE

− ISGE01

IGE01

∣∣∣∣
WP

)
(4)
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The di�erent factors that appear in the formulation are

ILE01 =

∫ 1

0

λ̂

E
dx̂′ ; IGE01 =

∫ 1

0

dx̂′

Γ̂E
; k̃ =

1

PL0IGE01

ISGE01 =

∫ 1

0

IS0x̂′

Γ̂E
dx̂′ =

∫ 1

0

L
∫ x̂′

0 S(x̂′′)dx̂′′

Γ̂E
dx̂′

IS01 = L

∫ 1

0
S(x̂) dx̂ =

∫ xrb

xlb

S(x) dx (5)

Note that the two factors related to the source term, ISGE01 and IS01, are dimensional whereas
those participating in the nodal coe�cients, IGE01, ILE01 and k̃, are dimensionless. All integrals are
between zero and one. They are evaluated by approximating the integrand by Hermite polynomials,
given its values and derivatives at the edges of the reference interval. ENATE provides an algebraic
relation between three nodes that is exact as long as the integrals have an analytical primitive. As
this will not be generally the case the integrands must be numerically approximated.

3 Problem Statement

ENATE 1D approach solves the one-dimensional �ow governed by the system of two equations
related to mass conservation and momentum transport (N-S) for two unknowns: pressure and
velocity. This �ow, although simple, contains all essential features of the pressure-velocity coupling.

d

dx
ρu = ṁ (6)

d

dx

(
ρuu− µdu

dx

)
= −dP

dx
+ ṁu+ Sm (7)

These equations govern the motion of an incompressible 1D �ow with mass and momentum
injection such as that happening in fuel cells, where the mass su�ers variations along the channel
due to di�usion in the porous layer in the direction perpendicular to the serpentine channel that feeds
the fuel (usually hidrogen) and air into the fuel cell. ρ may be considered as a line density (kgr/m)
and ṁ represents the mass source (kgr/m/s injected to or extracted from the 1D domain) which
may depend on x. In the Navier-Stokes equation the momentum source is ṁu as each kgr/m/s
of �uid injected/extracted at one point has to bring in/take away ṁu momentum units per meter,
otherwise the variable u would have two di�erent values at the same point. Sm represents additional
momentum sources due to gravity forces and other body forces in non-inertial reference frames, if
any.

The ENATE procedure for the Navier-Stokes equations transforms the original equation into:

(ρu)P − (ρu)W =

∫ P

W
ṁ dx (8)

PP − PW = (ρu2)P − (ρu2)W +

(
µ

ρ
ṁ

)
P

−
(
µ

ρ
ṁ

)
W

+

∫ P

W
ṁu dx+

∫ P

W
Sm dx (9)
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4 Numerical Tests

In this section numerical results are compared to the exact solutions in several test cases. By ad-
justing appropriately the source terms a wealth of di�erent (continuous and discontinuous) analytic
solutions may be obtained, in the same way as in Pascau [3]. All physical properties have been
taken as constants of value one and the inlet conditions are u0 = 1 and p0 = 0. On the whole, a
continuous solution for (6) and (7) can be read as

u(x) = u0 +
1

ρ

∫ x

x0

ṁ(x)dx (10)

P (x) = P0 +
µ

ρ
(ṁ(x)− ṁ0) +

∫ x

x0

(
Sm(x)− ṁ(x)

[
u0 +

1

ρ

∫ x

x0

ṁ(x)dx

])
dx (11)

Four tests cases were worked out in a domain Ω ∈ [0, 1] where ṁ and Sm were discontinuous.
In the interval [0, 0.3) there were no sources present, whereas mass and momentum source were
activated within (0.3, 0.7). From 0.7 onwards the mass source was constant taking the same value as
in 0.7 , and the momentum source was zero. Further, either ṁ or Sm adopted di�erent mathematical
expressions in the second interval to produce several test cases whose results are written down in
the next subsections. Additionally, the mass extraction produces a jump in the second derivative
of the velocity and consequently in the pressure, at each side of the discontinuity.∫ x+

x−
µ
d2u

dx2
dx =

∫ x+

x−
Aδ(x− xd)dx = A with A =

µ

ρ
ṁ (12)

where xd denotes the discontinuity point and x+/x− are right/left side at xd. In order to perform
Hermite interpolation for the integral of ṁu in Equation (9) a set of values and derivatives at nodal
points (W ,P ) are required. Being ρu known by Equation (8), every single integral can be evaluated
through Equation (6). Here, a list of the derivatives is shown for completeness:

• Cubic Hermite (4th Order)

d(ṁu)

dx

∣∣∣∣
W,P

= (u)W,P
dṁ

dx

∣∣∣∣
W.P

+
ṁ2

ρ

∣∣∣∣
W,P

• Quintic Hermite (6th Order)

d2(ṁu)

dx2

∣∣∣∣
W,P

= (u)W,P
d2ṁ

dx2

∣∣∣∣
W.P

+
3ṁ

ρ

∣∣∣∣
W,P

dṁ

dx

∣∣∣∣
W,P

• Septic Hermite (8th Order)

d3(ṁu)

dx3

∣∣∣∣
W,P

= (u)W,P
d3ṁ

dx3

∣∣∣∣
W.P

+
4ṁ

ρ

∣∣∣∣
W,P

d2ṁ

dx2

∣∣∣∣
W,P

+
3

ρ

(
dṁ

dx

)2
∣∣∣∣∣
W,P

4.1 ṁ linear and Sm linear

In the �rst case, ṁ and Sm were linear in the active interval
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ṁ = ṁ0
x− 0.3

0.7− 0.3
; Sm = Sm0

x− 0.3

0.7− 0.3

where ṁ0 and Sm0 are both equal to 100. We chose this value in order to test how good or bad
is the numerical approach with a steep slope in both sources. As we can see in Fig.1, these high
slopes a�ect more the exact pressure than the velocity, the former turns into high negative values
in some zones.

Regarding the numerical results, we got machine accuracy for both velocity and pressure for a
small number of nodes, 10. For all interval lengths the energy norm is the same, so L2 vs ∆x is not
plotted for neither Hermite polynomial.

4.2 ṁ linear and Sm exponential

In this case ṁ is linear as well but with ṁ0 = 1. The mass source was very simple, inasmuch as an
exponential momentum source was intended to be checked. The function that de�nes both is

ṁ =
x− 0.3

0.7− 0.3
with Sm = e5x

In Fig.2, norms for the discretization errors of the velocity/pressure �eld were plotted. As
expected, the energy norm for the velocity gets machine accuracy with just 10 nodes, as in the
previous case. This happens due to the velocity dependence on ṁ only, hence Sm does not play a
role in its accuracy.

Regarding the order of convergence, the Hermite polynomials provide what the theory predicts:
4th order for Cubic, 6th order for Quintic and 8th order for Septic. In the worst case, L2 takes a
value around 10−13 with 10,000 nodes, which is near machine accuracy. The comparison between
exact and numerical solutions is shown in Fig.3.

4.3 ṁ exponential and Sm linear

Tests 4.1 and 4.2 gave goods results for velocity, and also for pressure. So, in the next two cases a
combination of ṁ exponential and Sm linear or exponential was established. The mass/momentum
sources read

ṁ = e5x − e1.5 with Sm =
x− 0.3

0.7− 0.3

L2 vs ∆x is shown in Fig.4 and exact solution vs numerical solution in Fig.5. Energy norm
values are a bit worse than in the previous case. For the pressure and with ∆x = 10−2, values
of 10−6, 10−10 and 10−13 are found, to be compared with 5 · 10−7, 10−12 and 10−15 in 4.2. This
worsening of the L2 is caused by the integral of ṁu, which is a dominant source term in the pressure
Equation (9). Something slightly di�erent is found in the velocity. To reach machine accuracy more
than 10 nodes are required because the exponential of Sm is not appropriately interpolated and
hence, the integrand not accurately calculated. The order of convergence is that expected.

4.4 ṁ exponential and Sm exponential

Finally, for solutions where both mass and momentum source were exponential
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(a) Pressure �eld. (b) Velocity �eld.

Figure 1: Case ṁ and Sm linear. Exact solution vs numerical solution with 9 internal nodes and 2
boundary nodes.

ṁ = e5x − e1.5 with Sm = e10x

There is change in the factor of the exponential of Sm. The exact and numerical results were
plotted in Fig.7. As we can see in Fig.6, the results are not di�erent from the previous case. Only
for the pressure there were a slightly deterioration of his energy norm.

5 Conclusion and Future Work

ENATE is a procedure designed to obtain an algebraic equation that links nodal values of a
convection-di�usion equations. Under this idea, the discretization reduces to a numerical inte-
gration problem, instead of a numerical di�erentiation problem. The numerical errors introduced in
the integral evaluation are considerably less than those obtained when dealing with approximation
methods of the derivatives. With regard to the case tested, it was found that the mass source plays
a more important role in eqns.(8)-(9) than the momentum source. Even with exponential sources
ENATE provides solutions close to machine accuracy with a small number of nodes.

An obvious extension of ENATE 1D are The Navier Stokes equations in 2D. These introduce
additional di�culties as the derivatives in other directions have to be considered as pseudo-sources.
Work is underway o accommodate ENATE in 2D.
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Figure 2: Case ṁ linear and Sm exponential. Energy norm of velocity and pressure.

(a) Pressure �eld. (b) Velocity �eld.

Figure 3: Case ṁ linear and Sm exponential. Exact solution vs numerical solution with 9 internal
nodes and 2 boundary nodes.
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Figure 4: Case ṁ exponential and Sm linear. Energy norm of velocity and pressure.

(a) Pressure �eld. (b) Velocity �eld.

Figure 5: Case ṁ exponential and Sm linear. Exact solution vs numerical solution with 9 internal
nodes and 2 boundary nodes.
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Figure 6: Case ṁ exponential and Sm exponential. Energy norm of velocity and pressure.

(a) Pressure �eld. (b) Velocity �eld.

Figure 7: Case ṁ and Sm exponential. Exact solution vs numerical solution with 9 internal nodes
and 2 boundary nodes.
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