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Abstract: A new algorithm, IRK-SIMPLER, is developed based on implicit Runge-Kutta (RK)
methods. IRK-SIMPLER uses diagonally implicit Runge-Kutta (DIRK) stages to integrate the
momentum equations in time and solves a pressure equation each DIRK stage to satisfy continuity.
An iterative loop is used to solve the momentum and pressure equations without the need for
relaxation. IRK-SIMPLER is tested on an unsteady 3D simulation and is found to result in
speedups of up to 62 times compared to the traditional SIMPLER algorithm and up to 56 times
over the explicit RK-SIMPLER algorithm. To further improve the efficiency of the IRK-SIMPLER
algorithm methods such as approximate factorization and Multigrid methods are exploited. When
approximate factorization is used to solve the implicit momentum equations in the IRK-SIMPLER
algorithm, the runtime required reduces by up to 48% compared to IRK-SIMPLER without the
approximate factorization. Multigrid methods, when applied, to the IRK-SIMPLER algorithm,
the solution reaches the converged state each time step with up to 50% less runtime. Multigrid
methods are most advantageous when higher accuracy (i.e. lower residual values) are desired at
each time step such as when an accurate transient solution is sought.

Keywords: Numerical Algorithms, Runge-Kutta Methods, Unsteady Simulation, Implicit Methods,
Multigrid.

1 Introduction
As the desire for simulating more complex engineering flows increases, developers often turn to hardware
acceleration to reduce the time required to solve. Great advances have been made and are continuing to be
made in hardware acceleration techniques, but improvements in the algorithms and numerical methods can
also accelerate the simulation independent of the hardware used. This paper examines a new algorithm, IRK-
SIMPLER, for simulating unsteady incompressible flows. In addition, applying proven efficient numerical
methods such as approximate factorization and Multigrid to the IRK-SIMPLER algorithm is shown to
further reduce the runtime required to accurately simulate unsteady incompressible flows.

1.1 Unsteady Incompressible Flow Algorithms
In solving unsteady incompressible fluid flow problems, traditional iterative algorithms can become numeri-
cally inefficient as problems become increasingly complex. Pressure is not a variable in the continuity equation
and leads to the difficulty of not having an explicit equation for pressure. Three approaches have been often
used to remedy this problem: (a) artificial compressibility methods[1], (b) pressure-based methods[2], and
(c) vorticity-streamfunction approach[3].

The pressure-based methods derive an equation for pressure from the discretized continuity and mo-
mentum equations. Most pressure-based methods commonly used today have their roots in the SIMPLE
and SIMPLER algorithms[2]. The SIMPLER algorithm is based on an exact pressure equation and an ap-
proximate pressure correction equation that adjusts velocity to satisfy continuity. The SIMPLER algorithm
requires relaxation and sub-iterations at each time step to converge.
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In an attempt to improve the efficiency of pressure-based methods and increase the convergence rate,
many variants of the pressure-based algorithms have been developed including PISO[4], CLEAR[5], IDEAL[6]
and RK-SIMPLER[7]. Among these algorithms, CLEAR and IDEAL use relaxation and sub-iterations to
converge at each time step, while PISO and RK-SIMPLER are able to update the solution in time without
requiring sub-iterations within a time step.

RK methods are commonly used in solving Euler equations[8, 9] and the compressible Navier-Stokes
equations[10, 11, 12] because the spatially discretized conservation equations form coupled ordinary differen-
tial equations that are simply integrated in time with RK methods. However, for incompressible flow, there
does not exist an explicit equation for pressure. The spatially discretized continuity and momentum equations
form differential algebraic equations with an index of 2 as defined in Hairer[13]. Solving the incompressible
Navier-Stokes equations with RK methods is more intricate than the compressible Navier-Stokes equations.
Several incompressible algorithms that use RK methods have been developed [14, 15, 16, 17, 18, 19, 20, 21].
Sanderse[21] developed an algorithm that uses explicit RK methods and a projection method to integrate
in time while achieving higher temporal order of accuracy. Sanderse has shown that to achieve the higher
temporal order of accuracy of the RK method, continuity must be solved at each RK stage. The primary
interest so far in RK based methods is on the accuracy of the algorithm and not on the the efficiency of the
algorithms, which is often not presented or discussed.

The RK-SIMPLER[7] algorithm is a pressure-based method developed to solve the incompressible Navier-
Stokes equations using explicit RK methods. The RK-SIMPLER algorithm forms an equation for pressure
by combining the discretized continuity and momentum equations in exactly the same way as the original
SIMPLER algorithm. The solution of this equation is then used as an explicit source term in the momentum
equations. This results in the momentum equations becoming ordinary differential equations, which are
integrated in time with explicit RK stages. However, the RK-SIMPLER algorithm often requires small time
steps due to the explicit nature of the algorithm[7].

To relax the time step restrictions, implicit RK stages can be used in place of the explicit stage equations.
An implicit RK algorithm developed in Fischels[22] follows the original RK-SIMPLER algorithm closely with
the exception of integrating the momentum equation with implicit RK stages This algorithm is shown to
allow larger time steps and reduce the runtime for model problems when compared to the original explicit
RK-SIMPLER algorithm. A new algorithm which improves upon this implicit RK algorithm called IRK-
SIMPLER is developed in this paper and will center on reformulating the pressure equation for each stage
based on the RK stage equations for momentum, thereby satisfying continuity better at each stage.

1.2 Numerical Methods
The numerical methods used to solve the equations in any given algorithm can make a large difference in the
runtime required. A majority of the computations required in implicit algorithms is in solving the systems
of equations. Traditional methods for solving the linear systems of equations are Gauss-Seidel and other
simple point-by-point methods. In [7, 22] a line-by-line Tri-Diagonal Matrix Algorithm (TDMA)[2] is used
with symmetric Gauss-Geidel marching of grid lines in all dimensions. This method is found to be more
efficient than point-by-point methods, but is suitable only for structured grid systems.

To reduce the computations required to solve the momentum equations approximate factorization[23]
can be used. Approximate factorization allows a 3D system of equations to be solved as three sets of 1D
systems of equations along grids lines in the x, y, and z directions. Solving several relatively small 1D
systems of equations is generally much faster than solving a larger 3D system of equations. Approximate
factorization, as its name suggests, does require an approximation which introduces an error of order δt2. This
approximate factorization is integrated into the IRK-SIMPLER algorithm to solve the momentum equations
at the beginning of each RK stage. Given enough iterative loops in the IRK-SIMPLER algorithm, any errors
introduced by the approximate factorization will be removed because the exact momentum equations are
solved within the iterative loop.

Multigrid methods[24, 25] have been developed and found to accelerate the solution of systems of equa-
tions. When solving a system of equations on one fine grid with traditional solution methods, the errors in
the solution with high frequency (wavelengths proportional to the grid spacing) are removed very quickly
but errors that have low frequency (with wavelengths much larger than grid spacing) take many iterations to
remove. Multigrid methods dampen out all wavelengths of error at the same rate by iterating on successively
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coarser girds. With multigrid methods the system is solved for a few iterations on the finest grid, the error
is restricted to coarser grids where an equivalent system of equations is solved for a few iterations, then the
errors are prolonged back up to the finer grids where the fine grid variables are corrected and solved for a
few more iterations to remove any errors introduced in prolongation. These multigrid methods are efficient
at solving systems of equations, especially large systems of equations which would otherwise require many
iterations on a single grid.

A multigrid algorithm for incompressible flows has been developed by Zori[26] called FAS-SIMPLER
which solves the SIMPLER algorithm on each grid level while restricting and prolonging the velocity and
pressure. This multigrid algorithm resulted in large reduction in time. In this paper, a multigrid version of
the unsteady IRK-SIMPLER algorithm is introduced following a similar procedure to Zori. The traditional
V-cycle multigrid with fixed iterations on each grid level is examined as well as the cycle-C multigrid method
of Brandt[24] which automatically determines when to restrict to a coarser grid and when to prolong to a
finer grid.

2 IRK-SIMPLER Algorithm

2.1 Theory
The governing equations for fluid flow are the Navier-Stokes equations and for incompressible flows in three-
dimensional Cartesian coordinates can be written as
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The velocity components in (x, y, z) are (u, v, w), ρ is the fluid density, µ is the fluid dynamic viscosity, p
is the pressure, and (Su, Sv Sw) are momentum sources. The notation here follows closely to that found in
Rajagopalan[7]. The momentum equations (Equations 1-3) can be spatially discretized to form the following
semi-discrete equations.

du

dt
=

Ru

ρ∆x∆y∆z
(5)

dv

dt
=

Rv

ρ∆x∆y∆z
(6)

dw

dt
=

Rw

ρ∆x∆y∆z
(7)

where Ru, Rv, and Rw contain all spatially discretized terms (convection, diffusion, pressure, and source
terms) and can be expressed as

Ru =
∑

au−nbunb − au−PuP + bu −∆y∆z(pe − pw) (8)

Rv =
∑

av−nbvnb − av−P vP + bv −∆x∆z(pn − ps) (9)

Rw =
∑

aw−nbwnb − aw−PwP + bw −∆x∆y(pf − pb) (10)

The a values are coefficients and the b values are source terms. The summation is over neighboring (referred
to as nb) grid points which for a seven point stencil include the east, west, north, south, front, and back
grid points (E, W , N , S, F , and B), and P refers to the primary grid point of a cell. The coefficients of
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these equations are determined by the spatial discretization scheme used. This paper follows a finite volume
discretization scheme developed in Patankar[2] and used in Rajagopalan[7].

The continuity equation (Equation 4) can be integrated over the three-dimensional Cartesian control
volume surrounding the primary grid point (P ) to yield the following algebraic equation.

(ρu∆y)e − (ρu∆y)w + (ρv∆x)n − (ρv∆x)s + (ρw∆z)f − (ρw∆z)b = 0 (11)

The six control volume faces are east, west, north, south, front, and back faces (e, w, n, s, f , and b).
The semi-discrete momentum equations (Equations 5-7) and discrete continuity equation (Equation 11) form
differential algebraic equations (Hairer[13]) and have the following form.

d~V

dt
= f(~V , p) (12)

0 = g(~V ) (13)

The spatially discretized momentum terms are contained in f , and the discrete continuity terms are contained
in g. This form of the equations does not lead to a straightforward solution of pressure, as the momentum
equations contain pressure as a source term and the continuity equation does not explicitly contain pressure.

Patankar[2] developed a method by which pressure can be calculated by substituting the discretized
momentum equations into the discrete continuity equation. The pressure equation has the following form.

(ap−P )pP =
∑

(ap−nb)pnb + bp (14)

The coefficients and source of the pressure equation, namely (ap−P ), (ap−nb), and bp, are derived from
the momentum coefficients and are functions of velocity. If the velocity is known, this pressure equation
can be used to calculate a pressure field that satisfies continuity. In the SIMPLER algorithm the pressure
and momentum equations are solved iteratively with relaxation along with a pressure correction equation to
simultaneously satisfy mass and momentum conservation at each time step. The RK-SIMPLER algorithm[7]
solves the pressure equation once each time step and then uses that pressure in the explicit solution of the
momentum equations.

The IRK-SIMPLER algorithm is developed as an extension of the RK-SIMPLER algorithm, which has
shown to efficiently and accurately simulate unsteady flow problems, but time step restrictions may be severe
in high Reynolds number cases[7]. Using implicit RK methods in place of explicit methods, IRK-SIMPLER
attempts to improve the time step restrictions and reduce runtime. The IRK-SIMPLER algorithm uses
implicit RK methods to integrate momentum equations in time and solves a pressure equation to satisfy
continuity, with no approximate or correction equations required. No relaxation is needed for solving any of
these equations.

For IRK-SIMPLER a pressure equation is reformulated each stage from the momentum stage equations,
as opposed to the Crank-Nicolson based momentum equations used in RK-SIMPLER. In IRK-SIMPLER,
diagonally implicit RK (DIRK) methods[27] are used to integrate the momentum equations, and the stage
equations for x momentum are

(uP )s = (uP )n + ∆t

s∑
l=1

αs,lFu

(
tn + γl∆t, ul

)
for 1 ≤ s ≤ S (15)

where s is the stage index, S is the number of stages in the DIRK method, and αs,l and γl are coefficients
of the specific DIRK method used. The function Fu is defined as

Fu(t, u) =
∂u

∂t
=

Ru

ρ∆x∆y∆z
(16)

Rearranging and using the definition of Fu, the fully discrete x momentum equation for each stage becomes

a′u−P (uP )s =
∑

(au−nb)s(unb)s + b′u + ∆y∆z(pw − pe)s (17)
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where
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Similarly, the discretized form of the y momentum equation is

a′v−P (vP )s =
∑
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where
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and the discretized form of the z momentum equation is

a′w−P (wP )s =
∑

(aw−nb)s(wnb)s + b′w + ∆x∆y(pb − pf )s (23)

where

a′w−P = (aw−P )s +
ρ∆x∆y∆z
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The x, y, and z momentum equations are rewritten as

(uP )s = ûs + (du)s(pw − pe)s (vP )s = v̂s + (dv)s(ps − pn)s (wP )s = ŵs + (dw)s(pb − pf )s (26)

with

ûs =

∑
(au−nbunb)s + b′u

a′u−P
v̂s =

∑
(av−nbvnb)s + b′v

a′v−P
ŵs =

∑
(aw−nbwnb)s + b′w

a′w−P
(27)

(du)s =
∆y∆z

a′u−P
(dv)s =

∆x∆z

a′v−P
(dw)s =

∆x∆y

a′w−P
(28)

At each stage, the momentum equations (Equation 26) are substituted into the discrete continuity equa-
tion (Equation 11) at each control volume face to yield a discrete equation for pressure.

(ap−P )s(pP )s = (ap−E)s(pE)s + (ap−W )s(pW )s + (ap−N )s(pN )s + (ap−S)s(pS)s

+ (ap−F )s(pF )s + (ap−B)s(pB)s + (bp)s (29)

with

(ap−E)s = ρ∆y∆z(du−e)s (ap−W )s = ρ∆y∆z(du−w)s (30)
(ap−N )s = ρ∆x∆z(dv−n)s (ap−S)s = ρ∆x∆z(dv−s)s (31)
(ap−F )s = ρ∆x∆y(dw−f )s (ap−B)s = ρ∆x∆y(dw−b)s (32)
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(ap−P )s = (ap−E)s + (ap−W )s + (ap−N )s + (ap−S)s + (ap−F )s + (ap−B)s (33)
(bp)s = (ûw − ûe)s ρ∆y∆z + (v̂s − v̂n)s ρ∆x∆z + (ŵb − ŵf )s ρ∆x∆y (34)

The pressure equation cannot be solved directly without a known velocity field because the pressure
coefficients and source are functions of the unknown velocity components at the current stage s. Therefore,
at each stage the pressure and momentum equations must be solved to satisfy all conservation equations.

The procedure for solving pressure and velocity is as follows. First, the implicit form of the momentum
equations (Equations 17, 20, and 23) are solved for (u, v, w)s with the momentum coefficients and pressure
lagged by one stage (i.e., assume ps = ps−1 and as = as−1 where at stage s = 1, ps−1 = pn and as−1 =
an). With updated velocity components, the momentum coefficients are updated to the sth stage. Then,
(du, dv, dw)s are calculated from Equation 28, and the pressure coefficients are calculated (Equations 30-
33). An iterative loop is then preformed, which follows closely to that of the inner loops in the IDEAL
algorithm[6]. First, pseudo-velocities (û, v̂, ŵ)s are calculated from Equation 27. Then, the pressure source
(bp)s is calculated from Equation 34 and the pressure equation (Equation 29) is solved for ps. With an
updated pressure, the velocity components are updated with the explicit form of the momentum equaions,
Equation 26, using the most recent pseudo-velocities.

This process of calculating pseudo-velocity, solving pressure, and updating momentum explicitly is an
efficient method to simultaneously satisfy the continuity and momentum equations without the need for
relaxation or multiple implicit solutions of the momentum equations. The pressure coefficients are constant
throughout the iterative loop while the pressure source is recomputed as the velocity is updated. In practice,
only a few iterations of the iterative loop are needed to solve for pressure and velocity (five iterations are
used for all simulation in this paper).

The momentum coefficients are updated once after solving the momentum equations implicitly and can
also be updated after the iterative loop to improve the coefficient. After recomputing the momentum
coefficients the iterative loop is repeated. Recalculating the coefficients requires extra computations, but as
will be shown in the results, recalculating coefficients more than once can allow the algorithm to take larger
time steps and reduce runtime.

The final update to the n+ 1 time level for DIRK methods forms an explicit equation; however if stiffly
accurate methods are used this final update becomes unnecessary. Stiffly accurate DIRK methods[27] require
(u, v, w, p)n+1 = (u, v, w, p)S . By using stiffly accurate DIRK methods in IRK-SIMPLER, once the final stage
values of pressure and velocity are completed, the velocity and pressure at time level n+1 are known without
requiring further computation.

To start the IRK-SIMPLER algorithm, before the first time step, the domain is initialized with values
of pressure and velocity. If physically accurate initial conditions are not known, a uniform field is found to
work well. When starting with uniform initial conditions, the conservation equations will not necessarily be
satisfied at the beginning of the time step, but after the first time step is completed, all equations will tend
towards conservation.

A flowchart for the IRK-SIMPLER algorithm is shown in Figure 1. IRK-SIMPLER is tested with a two
stage DIRK method from Alexander[27], with its coefficients as follows.

α1,1 =α2,2 = α = 1−
√

2/2 α2,1 =1− α
γ1 =α γ2 =1

β1 =1− α β2 =α

The coefficients are also shown in a Butcher tableau[28] in Figure 2.

2.2 Results
The IRK-SIMPLER algorithm is tested on a 3D square cylinder with laminar unsteady vortex shedding to
examine the accuracy and efficiency of the new IRK-SIMPLER algorithm. For comparison, the SIMPLER
algorithm with Crank-Nicolson time integration[29] and the RK-SIMPLER algorithm[7] are also tested.

A 3D square cylinder will shed vortices for certain Reynolds numbers flows. Figure 3 shows a schematic
of the problem. Up to a critical Reynolds number of about 150 the vortex shedding is 2D with no variation
along the z direction[30]. Above the critical Reynolds number flow will become 3D with secondary vortices
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Start with an initial velocity and pressure field

Start Implicit RK Stages with s=1

Calculate coefficients of the momentum equations for stage s − 1

Solve the momentum equations (Eqs. 17, 20, & 23) for (u, v, w)s

Update coefficients of the momentum equations for stage s
using most recent (u, v, w)s

Calculate coefficients of the pressure equation (Eqs. 30-33)

Calculate (û, v̂, ŵ)s and then bp (Eqs. 27 & 34)

Solve the pressure equation (Eq. 29) for ps

Update (u, v, w)s (Eq. 26) using most recent (û, v̂, ŵ)s

Converged?

Yes

No

Update momentum coefficients again?

No

Yes

s = S?

Yes

Nos = s + 1

Final update to n+1 for stiffly accurate: (u, v, w, p)n+1 = (u, v, w, p)S

Advance to the next time step

Figure 1: Diagram of IRK-SIMPLER Algorithm.
7



α α
1 1−α α

1−α α

Figure 2: DIRK2, α = 1−
√

2/2

present. To test the IRK-SIMPLER algorithm in 3D, the 3D square cylinder with Reynolds number of 175
will be used following the same problem setup as [30]. The grid used is 162x82x26 with 16 grid cells along the
cylinder in the x and y direction and 24 grid cells along the cylinder in the z direction with appropriate grid
stretching to the boundaries. The body surfaces are no-slip walls, the left boundary is uniform inflow, the
right boundary is a velocity outflow corrected for mass conservation, and all other boundaries are inviscid
walls. Simulations are started impulsively and are run for 400 seconds. The traditional SIMPLER algorithm
with Crank-Nicolson time integration is used as a baseline with the number of sub-iterations within each
time step fixed at 20. Both the Power Law[2] and QUICK[31] schemes are used for spatial discretization.
The QUICK schemes is implemented with the aid of Lagrange interpolation as developed in [32].

B

B
A

B = 1.0
A = 6.0

Ui Ui = 1.0
ρ = 1.0
Re = ρUiB/µ

Figure 3: Schematic of the 3D square cylinder problem.

Contour plots of z-vorticity on the x-y mid-plane (z=3) are plotted in Figures 4 and 6 for the Power Law
and QUICK schemes respectively, and y-vorticity on the x-z mid-plane (y=5) is plotted in Figures 5 and
7 for the Power Law and QUICK schemes respectively. From the y-vorticity plots it is apparent that the
Power Law scheme is not able to capture the secondary vortices for the coarse grid used, while the QUICK
scheme does capture the secondary vortices when using the same grid.

The coefficient of drag on the square cylinder versus when using the Power Law and QUICK schemes
are plotted in Figures 8 and 9. There is variation between the methods for when the shedding starts and
the methods do not line up exactly. This behavior is similar to the vortex shedding for a 2D flat plate
investigated in [22]. For the Power Law simulations, the flow reaches an unsteady convergence with 2D
shedding of vortices at a constant rate. For the QUICK simulations, the flow seems to reach an unsteady
convergence but then both lift and drag peaks drop down and rise back up again. This occurs when the
secondary vortices begin to form.

Tables 1 and 2 show results for the Power Law and QUICK schemes. The average coefficient of drag for
the Power Law simulations approach 1.661 and the Strouhal number approaches 0.144. These values agree
well with other simulation results[30]. For temporal accuracy, a average coefficient of drag of 1.661±0.001,
or within 0.1% of the converged value, is used.
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Figure 4: 3D square cylinder: contours of z-vorticity at x-y mid-plane using Power Law scheme.

Figure 5: 3D square cylinder: contours of z-vorticity at x-y mid-plane using Power Law scheme.
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Figure 6: 3D square cylinder: contours of z-vorticity at x-y mid-plane using QUICK scheme.

Figure 7: 3D square cylinder: contours of z-vorticity at x-y mid-plane using QUICK scheme.
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Figure 8: Coefficient of drag and lift on the 3D square cylinder using the Power Law scheme.
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Figure 9: Coefficient of drag and lift on the 3D square cylinder using the QUICK scheme.
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Mom. Coef. ∆tmax CD at Sr at ∆tAcc CPU Time at Speedup
Updates (sec.) ∆tmax ∆tmax (sec.) ∆tAcc (min.) at ∆tAcc

C-N — 1.00 1.796 0.112 0.10 1304.75 1.0
RK — 0.06 1.674 0.144 0.002 1181.05 1.1 Power
IRK 1 0.30 1.663 0.146 0.20 52.68 24.8 Law
IRK 2 0.70 1.660 0.143 0.70 21.11 61.8

Table 1: 3D square cylinder Power Law results (speedup is relative to C-N).

Mom. Coef. ∆tmax CD at ∆tAcc CD at CPU Time at Speedup
Updates (sec.) ∆tmax (sec.) ∆tAcc ∆tAcc (min.) at ∆tAcc

C-N — 0.30 1.671 0.10 1.667 1277.44 1.0

QUICK
RK — 0.04 1.658 0.002 1.652 1187.55 1.1
IRK 1 0.06 1.664 0.06 1.664 191.03 6.7
IRK 2 0.60 1.668 0.60 1.668 28.69 44.5

Table 2: 3D square cylinder QUICK results (speedup is relative to C-N).

3 Application of Efficient Numerical Methods

3.1 Approximate Factorization
3.1.1 Theory

Approximate factorization[23] can be used to reduce the computations required to solve systems of equations.
Approximate factorization allow for a 3D system of differential equations to be reduced to decoupled 1D
systems. The approximate factorization of the momentum equations used in the IRK-SIMPLER algorithm
is presented next. Starting with the DIRK stage equation for the x momentum equation, Equation 16, and
substituting the Fu function results in:

(uP )s − (uP )n =
αs,s∆t

ρ∆x∆y∆z

[
au−EuE + au−WuW − axu−PuP + au−NuN + au−SuS − ayu−PuP (35)

+ au−FuF + au−BuB − azu−PuP + bu −∆y∆z(pe − pw)
]
s

+Rs(u)
∆t

ρ∆x∆y∆z

where axu−P , a
y
u−P , and azu−P are the central coefficient terms coming from the x, y, and z derivatives

respectively and axu−P + ayu−P + azu−P = au−P . Using ∆us = us − un leads to

(∆uP )s =
αs,s∆t

ρ∆x∆y∆z

[
au−E∆uE + au−W ∆uW − axu−P ∆uP + au−N∆uN + au−S∆uS − ayu−P ∆uP (36)

+ au−F ∆uF + au−B∆uB − azu−P ∆uP + bu −∆y(pe − pw)
]
s

+Rs(u)
∆t

ρ∆x∆y∆z

+
αs,s∆t

ρ∆x∆y∆z

[
(au−E)su

n
E + (au−W )su

n
W + (au−N )su

n
N + (au−S)su

n
S

+ (au−F )su
n
F + (au−B)su

n
B − (au−P )su

n
P

]
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Defining

(∆bu)s =
αs,s∆t

ρ∆x∆y∆z

[
(au−E)su

n
E + (au−W )su

n
W + (au−N )su

n
N + (au−S)su

n
S (37)

(au−F )su
n
F + (au−B)su

n
B − (au−P )su

n
P + (bu)s −∆y(pe − pw)s +

1

αs,s
Rs(u)

]
leads to

(∆uP )s =
αs,s∆t

ρ∆x∆y∆z

[
au−E∆uE + au−W ∆uW − axu−P ∆uP + au−N∆uN + au−S∆uS − ayu−P ∆uP (38)

+ au−F ∆uF + au−B∆uB − azu−P ∆uP

]
s

+ (∆bu)s

Next, operators fx and fy are defined such that

fx

(
(∆uP )

)
= au−E∆uE + au−W ∆uW − axu−P ∆uP (39)

fy

(
(∆uP )

)
= au−N∆uN + au−S∆uS − ayu−P ∆uP (40)

fz

(
(∆uP )

)
= au−F ∆uF + au−B∆uB − azu−P ∆uP (41)

which results in [
1− αs,s∆t

ρ∆x∆y∆z
fx −

αs,s∆t

ρ∆x∆y∆z
fy −

αs,s∆t

ρ∆x∆y∆z
fz

]
(∆uP )s = (∆bu)s (42)

Up to this point the DIRK stage equations have only been manipulated. The following step is where the
approximate factorization occurs.[

1− αs,s∆t

ρ∆x∆y∆z
fx −

αs,s∆t

ρ∆x∆y∆z
fy −

αs,s∆t

ρ∆x∆y∆z
fz

]
≈
(

1− αs,s∆t

ρ∆x∆y∆z
fx

)(
1− αs,s∆t

ρ∆x∆y∆z
fy

)(
1− αs,s∆t

ρ∆x∆y∆z
fz

)
(43)

which leads to (
1− αs,s∆t

ρ∆x∆y∆z
fx

)(
1− αs,s∆t

ρ∆x∆y∆z
fy

)(
1− αs,s∆t

ρ∆x∆y∆z
fz

)
(∆uP )s = (∆bu)s (44)

The error introduced in this approximation is (αs,s/ρ∆x∆y∆z)2∆t2(fxfy + fxfz + fyfz)
+(αs,s/ρ∆x∆y∆z)3∆t3fxfyfz which is order ∆t2 in time. The solution can then be found in four steps by
first defining

(∆u∗∗P )s =
(

1− αs,s∆t

ρ∆x∆y∆z
fz

)
(∆uP )s (45)

(∆u∗P )s =
(

1− αs,s∆t

ρ∆x∆y∆z
fy

)
(∆u∗∗P )s (46)

• Step 1: Solve for (∆u∗P )s (
1− αs,s∆t

ρ∆x∆y∆z
fx

)
(∆u∗P )s = (∆bu)s (47)

• Step 2: Solve for (∆u∗∗P )s (
1− αs,s∆t

ρ∆x∆y∆z
fy

)
(∆u∗∗P )s = (∆u∗P )s (48)
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• Step 3: Solve for (∆uP )s (
1− αs,s∆t

ρ∆x∆y∆z
fz

)
(∆uP )s = (∆u∗∗P )s (49)

• Step 4: Update (uP )s
(uP )s = (uP )n + (∆uP )s (50)

For a 3D structured Cartesian system, step 1 consists of solving independent 1D tri-diagonal systems
of equations in the x direction for each y=constant and z=constant grid line. Step 2 consists of solving
independent 1D tri-diagonal systems of equations in the y direction for each x= constant and z= constant
grid line. Step 3 consists of solving independent 1D tri-diagonal systems of equations in the z direction for
each x= constant and y= constant grid line. Solving these 1D systems of equations generally requires fewer
computations than solving the full 3D system of equations.

In the IRK-SIMPLER algorithm, the approximate factorization is used at the beginning of each RK
stage when the momentum equations are solved in the implicit form (Equations 17, 20, and 23). Instead
of using an iterative 3D solution method, approximate factorization allows the momentum equations to be
solved as sets of 1D systems of equations, and are solved independently with the TDMA. In IRK-SIMPLER,
the momentum equations are only solved implicitly once at the beginning of each stage. After solving
the momentum equations, the iterative loop takes place which simultaneously solves pressure and velocity.
Therefore, errors introduced by the approximate factorization will be removed by the iterative loops.

3.1.2 Results

Table 3 shows the results for the 3D square cylinder problem using the QUICK scheme with and without
approximate factorization. Using approximate factorization reduces the runtime when updating the momen-
tum coefficients both once and twice with one update requiring 48% less runtime and two updates requiring
31% less runtime.

Mom. Coef. ∆tmax CD at CPU Time at Speedup
Updates (sec.) ∆tmax ∆tmax (min.) at ∆tmax

IRK w/o AF 1 0.06 1.660 191.03 6.7
IRK w/ AF 1 0.07 1.651 99.73 12.8
IRK w/o AF 2 0.60 1.667 28.69 44.5
IRK w/ AF 2 0.60 1.673 19.78 64.6

Table 3: 3D square cylinder with QUICK using IRK-SIMPLER with and without approximate factorization
(AF) results (speedup is relative to C-N).

3.2 Multigrid
3.2.1 Theory

Multigrid methods allow linear systems of equations to be solved with fewer computations and less runtime
than with traditional methods[24, 25]. There are a variety of multigrid methods that have been developed
for many different problems. For incompressible flow, a multigrid method as been developed based on the
SIMPLER algorithm called FAS-SIMPLER[26]. A similar multigrid method will be developed for unsteady
incompressible flow based on the IRK-SIMPLER algorithm to improve the convergence rate at each time
step.

In the IRK-SIMPLER algorithm, to reach a converged solution (where all equations have low residual)
at each time step several iterations of the iterative loop must be completed. This is where most of the
computations occur in the IRK-SIMPLER algorithm and where the algorithm can slow down. To speed up
the convergence rate, multigrid methods will be developed.
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The non-linear system of equations to be solved has the form

Au = f (51)

When attempting to solve for u, after some iteration an approximate value v is known. The error can be
defined as e = u − v, however, this error is not computable without knowing the exact solution for u. A
computable measure of how close the approximate solution is to the exact solution is the residual, r = f−Av.
Equation 51 can be rearranged as

Ae = r (52)

As discussed in the introduction, using common iterative solution methods like Gauss-Seidel on a single
grid will quickly remove any high frequency errors but low frequency errors require many iterations to be
removed. To remedy this problem, restricting the problem to coarser grids will allow the low frequency errors
to be removed much quicker. In FAS multigrid methods the variables being solved for (u) are restricted to
the coarser grids. This is useful for non-linear problems where the coefficients are dependent on the variables.
In non-FAS methods only the error (e) is restricted to the coarser grids. For the non-linear incompressible
Navier-Stokes equations, the coefficients are dependent on the variables and so a FAS multigrid method will
be used in present research. The notation for the restriction of values from a fine grid k to a coarse grid k−1
is Ik−1k vk. The restriction of the variables in present research is accomplished by tri-linear interpolation
while the restriction of the residuals for finite volume methods (which are integrated quantities) requires an
addition, not an interpolation, of the fine grid residuals contained in each coarse grid volume.

After some iterations on the fine grid the high frequency errors have been removed while the low frequency
errors remain. At this point we will call the solution vk

old and calculate the residual rk. On the coarse grid
the error will be defined by

ek−1 = uk−1 − Ik−1k vk
old (53)

Substituting this into Equation 52 leads to the equation to be solved on the coarse grid k − 1.

Ak−1uk−1 = Ik−1k rk +Ak−1(Ik−1k vk
old) (54)

The value of uk−1 is initialized to Ik−1k vk
old when starting on the next coarser grid level. After some

iterations on the coarse grid the low frequency errors will be removed. These values are then restricted
to the next coarser grid in the same manner. Once the coarsest grid has been reached, the errors will be
prolonged back up to the finer grids. The notation for prolongation of values from a coarse grid k − 1 to a
fine grid k is Ikk−1v

k−1. For present research, all prolongation is accomplished with tri-linear interpolation.
The correction of fine grid values is found by

vk
new = vk

old + Ikk−1(vk−1 − Ik−1k vk
old) (55)

By prolonging errors to the fine grid some high frequency errors may be introduced, so a few more
iterations are computed. Then the error is prolonged to the next finer grid until the finest grid level is
reached. At this point one multigrid iteration has been completed. This form of multigrid iterations is called
V-cycle[25], where all grid levels are visited in order from fine to coarse while restricting and then all grid
levels are visited in order from coarse to fine while prolonging. In the presented simulations, the V-cycle is
used in the IRK-SIMPLER algorithm with a fixed number of three iterations on each grid level. This fixed
number has not been rigorously optimized and future research could include examining the impact of the
number of iterations on each grid level.

Another form or multigrid iterations is called cycle-C and has been developed by Brandt[24]. Instead of
visiting each grid level in order, cycle-C determines whether to move to a coarser or finer grid by monitoring
the residuals. For present simulation the residual value monitored is the sum of the L2 norm of all the
momentum equation residuals, r = L2(rx−mom) + L2(ry−mom) + L2(rz−mom). Cycle-C can move up or
down grids at any point during the iterations as the criteria are met.

When determining whether to restrict to a coarser grid, the convergence rate, or the rate that residuals
are dropping, is monitored. If the convergence rate is slow on the current grid, the high frequency errors
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have been removed and the values will be restricted to the next coarser grid. Restriction will occur if

rk > ηrklast (56)

where rklast is the residual value from the last iteration on the current grid level. The value of η is taken
from Brandt at 0.6. Whenever moving to a new grid level the value of rklast is initialized to a large value,
rklast →∞.

When determining whether to prolong to a finer gird, the convergence level, or the magnitude of the
current residual, is monitored. If the convergence level is below a tolerance for that grid level, that grid level
solution is converged and the values will be prolonged to the next finer gird. Prolongation will occur if

rk < rktol (57)

On the finest grid, k = N , the value of rNtol is set to be the overall tolerance level for the problem. If this
criteria is met on the finest grid level then the solution is found. On coarser grid levels, the value of rktol is
determined by a parameter δ and the next finer grid level residual by

rktol = δrk+1
last (58)

In other words, if the residual on a coarse grid level is less than the residual on the next finer level by a
specified amount, δ, that solution is deemed converged and will be prolonged to the next finer grid level.
The value of δ is taken from Brandt as 0.3. This cycle-C method of Brandt allows for the most efficient
use of the multiple grid levels by monitoring the residual and determining the optimal time to restrict and
prolong. On the other hand, the V-cycle will simply go up and down the grid levels in order whether or not
the convergence rate is slow or if the solution is converged. Both the V-cycle and cycle-C will be applied to
the IRK-SIMPLER algorithm to determine if the convergence rate can be improved.

In the IRK-SIMPLER algorithm, iterative loops are preformed which simultaneously solve pressure and
velocity. To get a converged solution each RK stage many iterations are required. Multigrid methods will
be applied to reduce the number of computations required to get a converged solution at each RK stage.
The initial solution of the momentum equations in IRK-SIMPLER is only solved once and does not use the
multigrid method. The multigrid methods are used in the iterative loops to accelerate the converge rate of
pressure and momentum equations. When using multigrid with the IRK-SIMPLER algorithm, the pressure
and velocity are restricted and prolonged and the residual of the pressure and momentum equations are
restricted. Each time a new grid level is reached the non-linear momentum and pressure coefficients are
computed with the latest approximation.

Both V-cycle and cycle-C multigrid methods are applied to IRK-SIMPLER. A diagram of the V-cycle
multigrid IRK-SIMPLER algorithm is shown in Figure 10, and a diagram of the cycle-C multigrid IRK-
SIMPLER algorithm is shown in Figure 11.

3.2.2 Results

Multigrid methods are more efficient than single grid method when a system of equations is to be solved to a
low residual level. In the previous sections, simulations were run with only a few iterations to complete the
simulation as fast as possible. Although the results were accurate, the residual values were not guaranteed
to reach a certain level each time step. The IRK-SIMPLER algorithm can instead be run with as many
iterations as required to reach a given residual tolerance. Figure 12 shows the mass and momentum residuals
versus CPU time for the IRK-SIMPLER algorithm and the multigrid IRK-SIMPLER method for one RK
stage. The single grid method residuals drop quickly at first, when the high frequency errors are being
removed, but they drop much slower when removing the low frequency errors. The multigrid method allows
the residual to drop consistantly at a constant rate, but for about the first 25 seconds, the single grid
momentum residuals are actually lower than the multigrid method.

The multigrid IRK-SIMPLER algorithm is tested on the 3D square cylinder problem with the QUICK
scheme and same grid as previously used. All algorithms and method will run with a time step of ∆t = 0.60
seconds with as many iterations as needed to yield the specified residual tolerance. Results are given in
Table 4. Multigrid does not decrease the runtime when the residual tolerance is 1× 10−6, but for a residual
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Start with an initial velocity and pressure field

Start Implicit RK Stages with s=1

Solve the momentum equations for (u, v, w)s

Start at finest grid level, k=N

Calculate coefficients of the momentum and pressure equations

If k<N add multigrid source to momentum and pressure equations

Iterative loop to solve pressure and velocity simultaneously

k = 1?

Yes

No
Restrict
k = k − 1

Calculate coefficients of the momentum and pressure equations

If k<N add multigrid source to momentum and pressure equations

Iterative loop to solve pressure and velocity simultaneously

k = N?

Yes

No
Prolong
k = k + 1

Converged?

Yes

No

s = S?

Yes

No
Next Stage
s = s + 1

Final update to tn+1 time level

Advance to the next time step

Figure 10: Diagram of V-cycle Multigrid IRK-SIMPLER Algorithm.
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Start with an initial velocity and pressure field

Start Implicit RK Stages with s=1

Solve the momentum equations for us and vs

Start at finest grid level, k=N

Calculate coefficients of the momentum and pressure equations

If k<N add multigrid source to momentum and pressure equations

Iterative loop to solve pressure and velocity simultaneously

rk < rktol? No rk > ηrklast? No
Set

rklast = rk

Yes

k = 1? Yes

Yes

k = N?

NoNo
Restrict
k = k − 1,
rklast → ∞

Prolong
k = k + 1,
rklast → ∞

Yes

s = S?

Yes

No
Next Stage
s = s + 1

Final update to tn+1 time level

Advance to the next time step

Figure 11: Diagram of cycle-C Multigrid IRK-SIMPLER Algorithm.
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Figure 12: Residual values with and without multigrid for IRK-SIMPLER.

tolerance of 1× 10−8, cycle-C reduces the runtime by 50% while V-cycle reduces the runtime by 24%.

Multigrid Residual CD at CPU Time at Speedup
Method Tolerance ∆t ∆t (min.) at ∆t

IRK — 1× 10−6 1.684 473.35 1.0
IRK V-cycle 1× 10−6 1.640 886.37 0.5
IRK cycle-C 1× 10−6 1.665 594.05 0.8
IRK — 1× 10−8 1.685 1486.07 1.0
IRK V-cycle 1× 10−8 1.666 1131.68 1.3
IRK cycle-C 1× 10−8 1.683 743.78 2.0

Table 4: 3D square cylinder IRK-SIMPLER with multigrid results (4 grid levels).

The 3D square cylinder case presented here has a relatively coarse grid. Multigrid methods are most
effective for highly refined grids with large systems of equations. More research is suggested to investigate
the IRK-SIMPLER algorithm with multigrid for simulations with more refined grids.

4 Conclusions
The new IRK-SIMPLER algorithm is developed for efficient simulation of unsteady incompressible flows by
integrating the momentum equations with DIRK methods and deriving a pressure equations each stage by
substituting the momentum equations into the continuity equation. To solve the pressure and momentum
equations efficiently, IRK-SIMPLER solves the momentum equations in the implicit form once and then
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preforms a iterative loop which solves the pressure equation and updates the momentum equations with
a simple explicit expression. This efficient loop allows both the pressure and momentum equations to
be satisfied simultaneously without requiring relaxation or multiple implicit solutions of the momentum
equations. The IRK-SIMPLER algorithm is tested on a 3D unsteady problem and is found to speedup the
simulation compared to the legacy SIMPLER algorithm by up to 62 times.

To further enhance the efficiency of IRK-SIMPLER, two efficient numerical methods are integrated into
the algorithm. The first method is approximate factorization which allows for the momentum equations
to be solved as sets of independent 1D systems of equations instead of 3D systems of equations. Using
approximate factorization allows for a reduction in runtime by up to 46%.

The second efficient method examined is multigrid. Two types of FAS multigrid cycles, V-cycle and
cycle-C, are applied to the IRK-SIMPLER algorithm. The cycle-C multigrid method is found to preform
30+% faster than the V-cycle method. The cycle-C multigrid method reduces the runtime to achieve a
converged solution at each RK stages every time step, resulting in up to 50% less runtime required. The
lower the tolerance specified for the residuals the more efficient the multigrid method becomes. More research
is required to investigate the multigrid method for problems with a larger number of grid cells as multigrid
methods are known to preform very well on high density grids.
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