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Martin Hanek1, Jakub Šı́stek2, Pavel Burda1

1 Faculty of Mechanical Engineering, Czech Technical University in Prague,
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Abstract: We apply Balancing Domain Decomposition based on Constraints (BDDC) to stationary in-
compressible flow governed by the Navier-Stokes equations. This method solves large systems of linear
equations arising from the finite element method. The algorithm is applied to nonsymmetric linear sys-
tems obtained by Picard’s linearisation of the Navier-Stokes equations discretised by Taylor-Hood finite
elements. Numerical results for an industrial problem of oil flow in a hydrostatic bearing are presented.
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1 Introduction
We deal with numerical simulation of oil flow in hydrostatic bearings. These are parts of production machines that
keep heavy moving parts of machines on a thin layer of oil to provide low friction. The thickness of the layer is
controlled by the so called throttling gap and is only few tens of micrometers high, while the remaining dimensions
are in millimeters. The domain where the oil flows, such as the one in Fig. 1, is called a hydrostatic cell. Oil enters
the domain through the top face and flows out through the outer side of the throttling gap, in which the pressure drops
from a high value in the main chamber maintained by an oil pump to the atmospheric value outside.

Our main goal is to simulate oil flow in whole hydrostatic cell during the move of the bearing wit real scale ge-
ometry. This is not an easy task and, up to our knowledge, such type of 3-D simulations has not been presented in
literature. During our research we have dealt with several kinds of problems of hydrostatic bearings. Starting with a
2-D axially-symmetric problem which does not allow the sliding motion of the bearing, and ending with a real scale
simulation of a moving bearing. This goes with the application of the finite element method to the Navier-Stokes
equations and efficient method to solving the arising systems of algebraic equations.

We apply the Balancing Domain Decomposition based on Constraints (BDDC) method to the linear equation
systems arising from the discretisation of the Navier-Stokes equations. The BDDC method was first introduced by
Dohrmann in [1] and applied to Poisson equation and linear elasticity. We use the approach described by Hanek, Šı́stek
and Burda in [2] combined with the domain partitioning strategy preferring straight subdomain interfaces recently
described and investigated in [3].

1



Figure 1: Hydrostatic cell (left) and projection of hydrostatic cell (right)

2 Finite element method for Navier-Stokes equations
In this section we recall our approach from [2] of using one step of BDDC method as a preconditioner for Navier-
Stokes equation. We consider stationary flow of incompressible fluid in a 3-D domain governed by the Navier-Stokes
equations without body forces (see e.g. [4])

(u ·∇)u−ν∆u+∇p = 0 in Ω, (1)
∇ ·u = 0 in Ω, (2)

with boundary conditions

u = g on ΓD, (3)
−ν(∇u)n+ pn = 0 on ΓN , (4)

where u = (u1,u2,u3)
T is an unknown vector of velocity, p is an unknown pressure normalized by (constant) density,

ν is a given kinematic viscosity, Ω is the solution domain, ΓD and ΓN are parts of the boundary ∂Ω, ΓD∪ΓN = ∂Ω,
ΓD∩ΓN = /0, n is the outer unit normal vector of the boundary, and g is a given function.

After multiplying equations (1)–(2) by test functions, integrating over the solution domain and using the diver-
gence theorem we get the following weak formulation

Seek u ∈Vg and p ∈ L2(Ω), satisfying∫
Ω

(u ·∇)u ·vdΩ+ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ ·vdΩ = 0 ∀v ∈V, (5)∫
Ω

q∇ ·udΩ = 0 ∀q ∈ L2(Ω). (6)

Here the spaces are

Vg :=
{

u ∈ H1(Ω)3,u = g on ΓD in the sense of traces
}
,

V :=
{

v ∈ H1(Ω)3,v = 0 on ΓD in the sense of traces
}
.

During the assembly of the system of algebraic equations we substitute into the weak formulation for finite element
functions of velocity and pressure linear combinations of the basis function to get nonlinear system of algebraic
equations. This system is linearized using Picard iteration which leads to the following system[

νA+N(uk) BT

B 0

][
uk+1

pk+1

]
=

[
f
g

]
, (7)
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where uk+1 is the vector of unknown coefficients of velocity at the (k+1)-th iteration, pk+1 is the vector of unknown
coefficients of pressure at the (k+1)-th iteration, A is the matrix of diffusion, N(uk) is the matrix of advection where
we substitute velocity from the k-th iteration, B is the matrix from continuity equation, and f and g are discrete right-
hand side vectors arising from Dirichlet boundary conditions. This linear nonsymmetric system is solved using the
iterative substructuring.

3 Iterative substructuring for Navier–Stokes equations
In order to use iterative substructuring, we decompose the solution domain Ω into N nonoverlapping subdomains. This
gives rise to dividing the unknown coefficients of the finite element functions to two classes – those present only in
one subdomain (interior) and those shared by two or more subdomains (interface).

Let subscript I denote the interior unknowns and subscript Γ denote the interface unknowns. We can now reorder
system (7) into the following block system

νAII +NII νAIΓ +NIΓ BT
II BT

ΓI
νAΓI +NΓI νAΓΓ +NΓΓ BT

IΓ
BT

ΓΓ

BII BIΓ 0 0
BΓI BΓΓ 0 0




uI
uΓ

pI
pΓ

=


fI
fΓ

gI
gΓ

 . (8)

After an embarrassingly parallel elimination of the interior unknowns on each subdomain, we get the interface problem

S
[

uΓ

pΓ

]
= g. (9)

Here

S =

[
νAΓΓ +NΓΓ BT

ΓΓ

BΓΓ 0

]
−
[

νAΓI +NΓI BT
IΓ

BΓI 0

][
νAII +NII BT

II
BII 0

]−1 [
νAIΓ +NIΓ BT

ΓI
BIΓ 0

]
is the Schur complement of the interior unknowns, and

g =

[
fΓ

gΓ

]
−
[

νAΓI +NΓI BT
IΓ

BΓI 0

][
νAII +NII BT

II
BII 0

]−1 [ fI
gI

]
is the reduced right-hand side. Problem (9) is solved by the BiCGstab method with one step of BDDC as a precondi-
tioner.

4 Balancing Domain Decomposition based on Constraints preconditioner
The BDDC preconditioner works with a residuum rk obtained from the k-th iteration of the BiCGstab algorithm

rk = g−S
[

uk
Γ

pk
Γ

]
, (10)

and provides an approximate solution to problem (9). In each action of the BDDC preconditioner, a coarse problem
and independent subdomains problems are solved. First, let us now have a look at the coarse problem. Before applying
the preconditioner in each iteration, one needs to set it up. First, we select the so called coarse degrees of freedom.
Values of individual components of velocity and pressure are used at corners of subdomains selected according to [5].
In addition, arithmetic averages over edges and faces of subdomains are also considered as coarse unknowns.

The coarse basis functions are found algebraically by solving the following local saddle-point systems on each
subdomain [

Si CT
i

Ci 0

][
Ψi
Λi

]
=

[
0
I

]
, (11)

where Si is the Schur complement with respect to the interface of the i-th subdomain, and Ci is the matrix defining
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coarse degrees of freedom, which has as many rows as is the number of coarse degrees of freedom defined at the
subdomain. The solution Ψi is the matrix of coarse basis functions with every column corresponding to one coarse
unknown on the subdomain. These functions resemble finite element shape functions – they are equal to one in the
corresponding coarse degree of freedom, and they equal to zero in the remaining local coarse unknowns.

As was show by Yano in [6], due to the nonsymmetry of the problem we also need to solve another saddle-point
system [

ST
i CT

i
Ci 0

][
Ψ∗i
ΛT

i

]
=

[
0
I

]
, (12)

where the solution Ψ∗i is the matrix of adjoint coarse basis functions with similar properties as the coarse basis func-
tions.

Denoting the residual preconditioned by the BDDC preconditioner uk
Γ
= M−1

BDDC rk, an action of the BDDC pre-
conditioner can be described by the following scheme

rk
i = WiRirk

coarse problem subdomain problems

SC =
N

∑
i=1

RT
CiΨ

∗T
i SiΨiRCi

rk
C =

N

∑
i=1

RT
CiΨ

∗T
i rk

i

SCuC = rk
C

uCi = ΨiRk
CiuC

[
Si CT

i
Ci 0

][
ui
λ

]
=

[
rk

i
0

]

uk
Γ =

N

∑
i=1

RT
i Wi(ui +uCi)

Here Ri is an operator restricting a global interface vector to i-th subdomain, matrix Wi applies weights to satisfy
the partition of unity and RCi is the restriction of the global vector of coarse unknowns to those present at the i-th
subdomain. The weights in the diagonal matrix Wi are constructed simply as inverses of the number of subdomains at
the interface degrees of freedom.

5 Numerical results
In this section we briefly recall our results from [3], where the importance of keeping straight interfaces of subdomains
and low aspect ratios of element faces on the interface was shown. The graph and geometric partitioning strategies
from [3] are applied here to our driving application – simulations of oil in hydrostatic bearings. In [3] we investigated
the effect of aspect ratio of the faces of finite elements at the interface on convergence. As a benchmark problem,
we considered a channel narrowing along one or two coordinates to increase the aspect ratio of the finite elements.
Detail of the interface between two subdomains for each partitioner can be seen in Fig. 2. The results show that with
increasing aspect ratio of finite elements, the number of iterations for the graph partitioner rapidly increases while for
the partitioner favouring straight interfaces, it remains the same, and robustness with respect to the element aspect
ratios can be achieved. More details can be found in [3].

The computations have been performed by a parallel finite element package written in C++ and described by [7],
with the BDDCML library being used for solving the arising systems of linear equations. The Picard iteration is

terminated when
∥∥uk−uk−1

∥∥
2 ≤ 10−5 or after performing 100 iterations. Here uk =

[
uk

Γ

pk
Γ

]
. The BiCGstab method
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Figure 2: Detail of the interface between two subdomains for the graph (left) and the geometric (right) partitioner
(from [3]).

is stopped if
∥∥rk
∥∥

2 /‖g‖2 ≤ 10−6, with the limit of 1000 iterations.

In our calculation we consider that the bearing is sliding on the lower wall with velocity u = (1,0,0) and kinematic
viscosity is set to ν = 0.1. In order to resolve the flow in the throttling gap, several layers of elements are placed along
its thickness. This results in very bad aspect ratio of elements in the gap, easily reaching 200. The mesh contains
approximately 18 thousand elements, 159 thousand nodes, and 500 thousand unknowns. Computations are performed
on 32 processors.

We compare the two approaches to mesh partitioning described in [3]. Solution of the problem is presented in
Fig. 4. Picard iteration using the mesh by the graph partitioner did not converge in 100 iterations. On the other hand,
solution of the problem decomposed by the geometric partitioner required only 3 Picard iterations, each solved in the
average by 162 BiCGstab iterations.

Figure 3: Computational mesh partitioned into 32 subdomains by the graph partitioner (left) and by the geometric
partitioner (right).

6 Conclusions
We have applied the Balancing Domain Decomposition based on Constraints (BDDC) method to Navier-Stokes equa-
tions. The goal is to simulate an industrial problem of oil flow in hydrostatic bearings. We have combined approach of
using BDDC preconditioner to nonsymmetric linear equation systems from [2] with partitioning strategies described
in [3]. In [3] we have shown that domain decomposition using the graph partitioner could be problematic for meshes
containing elements with high aspect ratios, while the geometric partitioner can drastically improve robustness for
those meshes.

In this contribution we compare computational possibilities using partitioners from [3] in application to a compli-
cated geometry of hydrostatic bearing. Using the graph partitioner to decompose the solution domain, we could not
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Figure 4: Solution of the hydrostatic bearing problem. Streamlines coloured by the magnitude of velocity (left) and a
plot of pressure (right).

achieve the required precision for linear problems. On the other hand, using the geometric partitioner has given us the
possibility to simulate flow of oil in hydrostatic bearings with real scale geometries of the throttling gap.
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