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Abstract: In order to enable the technological advancements required for new aircraft, the con-
ceptual design process must accommodate both low- and high-�delity multidisciplinary engineering
analyses. The results of these analyses can be used to create accurate multi-�delity surrogate mod-
els which can be enhanced with derivative information and augmented with dynamic training point
selection and local optimization to reduce overall computational cost. In this paper such accurate
multi-�delity surrogate models are used for aerodynamic database creations capitalizing on the
computationally cheap surrogate function evaluations.
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1 Motivation and Background

The Air Force Research Laboratory's Multidisciplinary Science and Technology Center is currently investi-
gating conceptual design processes and computing frameworks that could signi�cantly impact the design of
the next-generation E�cient Supersonic Air Vehicle (ESAV) [1]. The ESAV is an aircraft concept designed
to meet the ever-growing Air Force requirements for mission capability, combat survivability, and lifetime
sustainability of future military aircraft. The supersonic, likely tailless, low-observable, and embedded-engine
con�guration requires a multidisciplinary design and analysis approach. This approach makes it possible to
achieve these requirements while capturing the complex, often coupled, physical phenomena present in the
operating environment and �ight regime, e.g., nonlinear aeroelastic, aerodynamic, and thermal-structural
e�ects. It also allows researchers to exploit these e�ects and their interactions to achieve advanced aircraft
capabilities and con�gurations otherwise unattainable. These coupled analyses are computationally very ex-
pensive, which poses a huge challenge since a large number of con�gurations must be analyzed [1]. Thus, for
inclusion in the overall design routine, the analysis must balance a trade-o� between �delity of the solution
and computational time [2]. In addition, being tailless presents unique challenges in lateral control requir-
ing the use of multiple unconventional control e�ectors for which no previous examples and no empirical
knowledge in which to base these designs exist.

In order to save computational time the use of surrogate models is a very attractive option. The idea of a
surrogate model is to replace expensive function evaluations with an approximate but inexpensive functional
representation which can be probed exhaustively. Especially the polynomial chaos [3, 4, 5] and the kriging
model [6, 7, 8, 9, 10] have gained popularity. The kriging surrogate model, originally developed in the �eld of
geological statistics, predicts the function value by using stochastic processes, and has the �exibility to rep-
resent multimodal functions. Because an e�cient gradient evaluation method based on adjoint formulations
is available, the introduction of gradient information within surrogate models as additional training data has
also attracted attention. The reason for this is that, for computational high-�delity applications targeting a
single output objective, the e�ort for computing the full gradient is, thanks to adjoint techniques, compara-
ble to the e�ort of computing the objective function itself. Therefore, as the number of design inputs, M ,
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increases, using the output function and its derivative information is appealing, because it provides M + 1
pieces of information for roughly the cost of two function evaluations. Thus, one can reasonably expect to
have to compute the output function overall far fewer times to obtain a good surrogate model when using
gradient information. While the computational e�ort for adjoint techniques is proportional to the number of
output objectives this should not limit the applicability to the ESAV design since in all studies thus far this
number has been very small. Gradient enhanced polynomial chaos [3, 4, 5] as well as kriging [11, 12, 13, 14]
models have been developed in the surrogate model community and have shown very bene�cial results.

In order to obtain a globally accurate surrogate model, the �rst author re�ned the construction of sur-
rogate models by a dynamic training point selection with a stopping criteria rather than only specifying
the sample size at the beginning and picking the training points through latin hypercube sampling (i.e.,
randomly) [15, 16]. This is similar to the concept of expected improvement (EI) when performing opti-
mizations with a kriging model where a potential for improvement is used which considers both estimated
function values and uncertainties in the surrogate model, thereby keeping the balance between global and
local search performance. The adopted strategy for the dynamic training point selection is to select a large
set of test candidates randomly. One can then construct a local response surface (Multi-variate Interpolation
and Regression (MIR) [17] is employed in this work) using available function and gradient information in
the neighborhood of a test candidate and compare the global surrogate model function value prediction with
the local one. A few test candidates with the worst discrepancy between the two predictions can then be
added to the set of training points, only then evaluating the real function (and gradient) value for these
points. This approach has been demonstrated to yield better monotonicity in the convergence (i.e., using
more training points leads to a more accurate surrogate model) and more accurate surrogates for the same
number of training points [15, 16]. It also provides a convergence criteria as shown in Figure 1. Here, the
norm of the di�erences between the local and global surrogate (denoted as DIFF) is used in lieu of the
actual root-mean squared error (RMSE) with hardly any computational cost involved in computing DIFF
as opposed to the popular Leave-one-out cross validation [18, 19] which can be quite expensive.
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Figure 1: Comparison between actual RMSE and norm of di�erences between the local and global surrogates.

Kriging also supports the usage of both high- and low-�delity training points [20, 21, 14, 22, 23]. The
general idea is to combine trends from low-�delity data (e.g., coarser meshes, less sophisticated models) with
interpolations of high-�delity data (e.g., �ner meshes, better models, experimental data). An application
to an analytic function example where a more accurate surrogate model is constructed by using the trends
from low-�delity functions is shown in Figure 2.

In summary, the general goal of this work is to build highly accurate surrogate models at small overall
computational cost assuming that obtaining high-�delity training point information is the dominant cost
factor. The strategy to achieve this is to enhance surrogate modeling techniques by adaptively selecting
training points as well as utilizing derivative information and to employ lower �delity information as well as
locally optimized surrogate models. The last two aspects will be discussed in more detail in the next two
Sections, 2 and 3, before the global accuracy is demonstrated for analytic test functions and a transonic
aero-database in Section 4. Section 5 concludes this paper.
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Figure 2: Analytic function example for the use of variable-�delity kriging.

2 Variable-Fidelity Kriging Surrogate Modeling (VFM)

The key idea of any variable-�delity surrogate model is to map the trend of the unknown function underlying
the intensively sampled low-�delity (LF) data to the less intensively sampled high-�delity (HF) data. The
most popular method currently used is a correction-based method [23]. The correction is called bridge
function, scaling function or calibration. The correction can be multiplicative [24], additive [25, 26] or hybrid
multiplicative/additive [27, 28]. A multiplicative bridge function is used to locally scale the LF function to
approximate the HF function and is typically a low-order polynomial (of constant, linear or second order).
An additive bridge function was developed as a global correction and has become the most popular method
for variable-�delity optimization or for data fusion [23]. The additive bridge function should also be of low
order but of higher order than the multiplicative one. In general, additive bridge functions are more accurate
and robust than multiplicative bridge functions [23]. However, Gano et al. [27] showed that additive bridge
functions are not always better than multiplicative ones. Hence, Gano et al. developed an adaptive hybrid
method that combines the multiplicative and additive methods. Most hybrid bridge functions [27, 28] are
particularly designed for an optimization context, however, the problem is quite di�erent for the construction
of globally accurate surrogates in a possibly relatively large parameter space as needed here.

For the present work a hybrid bridge function approach adopted from Han et al. [23] was implemented.
The relationship between the high- and low-�delity surrogate model (surrogate values indicated by a hat) in
any location x is expressed as:

ŷHF (x) = φ̂(x)ŷLF (x) + γ̂(x) (1)

where γ̂(x) is an additive bridge function, φ̂(x) = fT (x)ρ̂ is a low-order polynomial with q+1 basis functions
fT (x) = [1, f1(x), . . . , fq(x)] and corresponding coe�cients ρ̂ = [ρ̂0, ρ̂1, . . . , ρ̂q]T . The implemented frame-
work supports an arbitrary number of �delity levels via an approach similar to a multi-grid strategy. The
construction of a variable-�delity model (VFM) is accomplished via the following four steps:

1. Build kriging model for lowest �delity data, ŷLF1 , using NLF1 lowest �delity training points

2. Build another kriging model for additive bridge function, γ̂2, to connect to next �delity level, where
γ2(x) = yLF2(x)− φ̂2(x)ŷLF1(x) in NLF2 next �delity level training points

3. Compute optimal ρ̂2 during the maximum likelihood estimation updates for γ̂2 which yields
ŷLF2(x) = φ̂2(x)ŷLF1(x) + γ̂2(x)

4. If (.)LF2 = (.)HF stop, otherwise repeat steps 2 and 3 until highest �delity level has been reached

To demonstrate the advantage of a hybrid bridge function compared to an additive one a transonic
CFD example is presented next, which involves the steady inviscid �ow around a NACA 00xx airfoil. The
computational mesh for the employed �nite-volume solver SU2 [29, 30] consisted of 10,216 triangular ele-
ments. The variations of the lift coe�cient with changes in Mach number (0.8 ≤M∞ ≤ 1.2), angle of attack
(2◦ ≤ α ≤ 8◦) and thickness to chord ratio (4% ≤ tc ≤ 12%) are studied. An �exact� database is obtained
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from Euler �ow solves on a Cartesian mesh of 21× 13× 9 = 2457 equispaced nodes and is used for compar-
isons. The low-�delity data is calculated using ZEUS [31], which solves the Euler equations with a small
disturbance boundary condition and is roughly four times faster than SU2. Figure 3 shows the exact and
VFM kriging isosurfaces for three di�erent Cl values. It can be inferred that the VFM is in good agreement
with the exact model and is able to capture the transonic behavior very well, demonstrating its ability
to model non-smooth functions. One can also observe that the dynamic training point selection clustered
high-�delity points in the more varying transonic region as opposed to the relatively �at supersonic region.

Figure 3: Three isosurfaces of truth model and VFM kriging with 60 high-�delity and 50 low-�delity training
points using a hybrid bridge function.

In Figure 4 the performances of just an additive and the hybrid bridge function (using a linear multiplier)
are compared in more detail. As a benchmark the kriging model constructed using HF training points only
is also shown (solid red line). All models started with the same nine HF training points (the corners and
center of the domain) together with the total number of LF training points (0-300) which are selected via
latin hypercube sampling. Then the adaptive training point framework added three HF training points per
iteration until a maximum amount was reached. One can observe that the hybrid bridge functions yields
much more accurate results for the same computational cost compared to the additive bridge function. The
VFM outperforms the single-�delity one even when the cost for obtaining the LF samples is taken into
account.

4



 0.01

 0.1

 20  40  60  80  100  120  140  160

R
M

S
E

Number of HF training points

HF only
Add. bridge 300 LF
Add. bridge 200 LF
Add. bridge 100 LF

Add. bridge 50 LF
Hybrid bridge 300 LF
Hybrid bridge 200 LF
Hybrid bridge 100 LF
Hybrid bridge 50 LF

 0.1

 1

 20  40  60  80  100  120  140  160

M
ax

 E
rr

or

Number of HF training points

HF only
Add. bridge 300 LF
Add. bridge 200 LF
Add. bridge 100 LF

Add. bridge 50 LF
Hybrid bridge 300 LF
Hybrid bridge 200 LF
Hybrid bridge 100 LF
Hybrid bridge 50 LF

Figure 4: Root-mean squared error (RMSE) (left) and maximum error (right) between the truth model and
VFMs as a function of number of high-�delity training points.

3 Agglomeration of Locally Optimized Surrogates (ALOS)

The idea is to use multiple local models to overcome the limited modeling �exibility of a single global model
when there is heterogeneity in the governing function. In a kriging context if an underlying function shows
varying response behavior a stationary covariance structure will result in low quality prediction and overly
conservative expected mean squared errors. This e�ect can be ampli�ed by data collected adaptively and
unevenly as done in this work. Thus, utilizing a non-stationary kriging methodology via locally-optimized
covariance holds promise as demonstrated by Clark and Bae [32, 33] and Liem et al. [34].

For a more local approach the problem domain must be partitioned into several subregions. One promising
way to achieve this is a mixture-of-experts (ME) approach. In the classical ME approach, the partitioning and
learning of the problem domain are based on the same algorithm. Tang et al. [35] proposed another approach,
which relies on a cluster-based preprocessing step, thus separating the partitioning and learning processes.
In the partitioning process similar data is clustered together based on one attribute that re�ects the function
pro�le to be modeled (e.g. function value or derivative information). Thus, the clustering or unsupervised
learning algorithm is applied to a much simpler one-dimensional problem and several algorithms such as
self-organizing feature maps, K-means, distance-based measures, or Gaussian mixture models (GMM) [36]
can be employed. Each local expert is then trained within its own smaller problem domain, which is likely
more homogeneous than the entire domain. This approach is typically referred to as the mixture of explicitly
localized experts (MELE), whereas the classical ME model is categorized as the mixture of implicitly localized
experts (MILE). Masoudnia and Ebrahimpour [37] present a thorough survey of the di�erent ME methods
and discuss the advantages and disadvantages of MILE and MELE. One of the main challenges in ME
modeling is the automatic determination of the number of experts a priori, which has been identi�ed as a
di�cult problem in data clustering in general [38].

Following Liem et al. [34] an explicit mixture-of-experts approach is used here. In their approach, the
problem domain is �rst partitioned into several subregions via a GMM unsupervised learning algorithm,
which is followed by local expert (surrogate model) training in each subregion. The local predictions can
then be combined probabilistically to yield the agglomerated �nal prediction, ŷ(x), in any location x:

ŷ(x) =
K∑

k=1

Πk(x)ŷk(x) (2)

where ŷk(x), k = 1, . . . ,K are the local surrogate model predictions (ie. the local experts) where K is the

total number of experts. Πk(x) is the mixing proportion with 0 ≤ Πk(x) ≤ 1 and
∑K

k=1 Πk(x) = 1. Here,
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this mixing proportion is given by a modi�ed softmax function

Πj(x) =
exp[ωaj(x)]∑K

k=1 exp[ωak(x)]
(3)

with ω set to 3.0 and aj(x) = ln[p(x|zj = 1)p(zj = 1)] where p() is a probability determined by a Gaus-
sian Naive Bayes supervised learning algorithm and zj is a K-dimensional binary random variable with∑K

k=1 zk = 1, ie. the j-th local model is active when zj = 1. The agglomeration of locally optimized surro-
gates (ALOS) framework can be summarized as follows:

1. Perform unsupervised learning using a GMM to initially cluster the available training data. The
program EMMIX (Expectation-Maximization-based MIXture analysis) [39] is employed here. The
user must decide on the clustering criterion (default is function values). The number of clusters is
maximized by the algorithm such that at least a user de�ned minimum number of training points is
in each cluster. The algorithm can check for �islands� which may have been created and remove them
automatically by reassigning all training points in the island to the largest touching cluster.

2. Build a separate local surrogate model within each cluster, ŷk(x) k = 1, . . . ,K, and compute the
corresponding mixing proportion, Πk(x), using equation (3). The clusters can either have no overlap
at all (ie. they are a partition of unity) or a user de�ned number of training points from each neighboring
cluster can be added to the local training set to promote continuity between clusters.

3. Compute the agglomerated estimation, ŷ(x), using equation (2).

4. Add additional training points to the cluster with the worst discrepancy between the global ALOS and
local MIR models subject to a load balancing constraint and return to step 2 until a computational
budget is exhausted or convergence.

4 Global Accuracy Results

4.1 Analytic Test Functions

In this subsection the root-mean squared error (RMSE) and maximum error of the various surrogate mod-
eling strategies are compared for three analytic test functions de�ned on unit cubes of increasingly higher
dimensionality.

One-dimensional Analytic Test Function

In Figure 5 the performances of agglomerated locally optimized surrogates (ALOS) and a global kriging
surrogate for a one-dimensional analytic test function are compared. All models started with the same
seventeen training points spread non-uniformly over the domain. Then the adaptive training point framework
added one training point per iteration until a maximum amount of forty was reached. The initial training
point distribution and function is taken from Clark and Bae [33] and is given by

f(x) = sin[30(x− 0.9)4] cos[2(x− 0.9)] + (x− 0.9)/2

One can observe that the ALOS approach outperforms the global approach for both function value only
(F) and function and gradient values (FG). The global kriging model errors tend to be larger due to the
required compromise in the distance weight or length scale, θ, in the kriging model which has to be a single
value in each dimension. When the modeling is distributed to local experts one can disregard the correlation
between samples from di�erent subregions. Moreover, each local expert is free to select the best model
parameters to better re�ect the characteristics of the underlying function in its subregion (e.g., di�erent
distance weights or covariance functions for each local kriging model).

Plots of the initial models are shown in Figure 6 and one can observe the larger �uctuation of the global
model in the right half of the domain which is due to the required compromise in θ. The optimal distance
weight for the �rst local model (left half) is θ = 7.43 whereas for the second (right half) it is θ = 2.41 where
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Figure 5: RMSE (left) and maximum error (right) between the one-dimensional truth model and ALOS with
2 clusters as well as a global surrogate as a function of number of high-�delity training points.

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

f(
x)

x

Exact
Global

Agglomerated
Local 1
Local 2

HF

Figure 6: Plot of one-dimensional truth model (red), global kriging (green), two local krigings (pink and
light blue) as well as the agglomerated model (dark blue) using the initial seventeen points.

a lower θ implies a stronger correlation between the training points. In contrast, for the global kriging the
optimal θ is 7.20 which shows the required compromise and yields a seven times larger RMSE as can be
inferred from Figure 5 and visually seen in Figure 6.

Figure 7 shows the performance when the global and ALOS models are enhanced with low-�delity data.
One can infer that the LF data tends to reduce the errors especially in the beginning (compare dashed and
solid lines in same color). The poorer performance at the end is likely due to over-�tting. The LF data is
governed by

fl(x) = (f − 1.0 + x)/(1.0 + 0.25x)

which implies that the employed linear multiplicative bridge function can recover the HF data exactly.
Intuition suggests and numerical experimentation con�rmed that LF training point locations should contain
the HF locations as a true subset to ensure that no additional error through ŷLF (x) is introduced when
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Figure 7: RMSE (left) and maximum error (right) for ALOS with 2 clusters and a global surrogate both
enhanced with low-�delity data as a function of number of high-�delity training points in one dimension.

computing γ(x) = yHF (x)− φ̂(x)ŷLF (x) in all NHF high-�delity training point locations. The low- and high-
�delity data use the same information, ie. they are both function value only (F) or both function and gradient
values (FG). Initially 50 LF training points are used where 17 are dictated by the HF training locations and
the remaining 33 points are picked via latin hypercube sampling subject to a distance constraint to the 17
existing points. Whenever a HF point is added via the dynamic training point algorithm the corresponding
LF point is added to the set as well.

Two-dimensional Analytic Test Function

In Figure 8 the performances of ALOS with two clusters and a global kriging surrogate for a two-dimensional
analytic test function are compared. All models started with the same twenty-�ve training points. Then the
adaptive training point framework added two training points per iteration until a maximum amount (63)
was reached. The function and initial training point distribution is again taken from Clark and Bae [33] and
is given by

g(x, y) = sin[21(x− 0.9)4] cos[2(x− 0.9)] + (x− 0.7)/2 + 2y2 sin[xy]
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Figure 8: RMSE (left) and maximum error (right) between the two-dimensional truth model and ALOS with
2 clusters as well as a global surrogate as a function of number of high-�delity training points.

One can infer that ALOS outperforms the global approach in the beginning and end for function value
only (F) whereas it is worse than the global approach for function and gradient values (FG) in the beginning
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but then does much better than the global approach. Figure 9 shows the domains of the two clusters and the
training point distribution at the beginning and the end of the simulation. At the end one can observe the
dynamic training point algorithm put the points especially in the second (blue) cluster (see also Figure 11)
which also features the largest θ values as shown in Table 1. One can also observe a smoother transition and
thus less agglomerated error between the two clusters compared to the beginning.

Figure 9: Plot of Πk(x) using the 25 initial points (left) and �nal 63 points (right). Di�erent colors correspond
to di�erent clusters. The highest color intensity within each cluster corresponds to Πk(x) = 1.

The local kriging and gradient-enhanced kriging (GEK) models have di�erent optimum length scales
θ = [θx, θy] in the partitioned input space as the global kriging and GEK as shown in Table 1, suggesting
that the ALOS approach has the potential to be better at modeling the di�erent characteristics in the
function pro�le. The di�erence can be especially seen in the more non-stationary x-direction where the
global kriging's θ-value of 2.55 is a compromise between the blue cluster's 4.20 and red cluster's 0.59 where a
lower θ implies a stronger correlation between the training points. A consequence of this is shown in Figure 10

Number of clusters Length scales, θ
kriging
1 [2.55, 0.27]
2 [0.59, 0.21], [4.20, 0.34]
GEK
1 [0.55, 0.04]
2 [0.32, 0.06], [0.59, 0.04]]

Table 1: Optimum length scales for kriging and GEK using 1 and 2 clusters in two dimensions using 25
training points.

where plots of the initial models are displayed. The global kriging model exhibits additional �uctuation in
the relatively smooth right half of the �gure whereas ALOS is much more accurate there. However, ALOS
exhibits additional �uctuations in the overlap region due to the mismatch of the two local models as shown
in the left of Figure 9.

A plot of the �nal models after 38 points have been dynamically added (for a total of 63) is shown in
Figure 11 where an excellent agreement between ALOS and the truth model can be visually inferred.

Figure 12 shows the performance with enhancement through low-�delity data. The LF data tends to
reduce the errors for all numbers of high-�delity training points considered (compare dashed and solid lines

9



Figure 10: Plot of truth model (red) as well as the global kriging (white) and ALOS with 2 clusters (blue)
using the 25 initial points.

Figure 11: Plot of truth model (white) as well as the two local surrogate models (same color code as in
Figure 9) using 63 points.
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Figure 12: RMSE (left) and maximum error (right) for ALOS with 2 clusters and a global surrogate both
enhanced with low-�delity data as a function of number of high-�delity training points in two dimensions.

in same color). The LF data is governed by

gl(x, y) = (g − 2.0 + x+ y)/(5.0 + 0.25x+ 0.5y)

which implies again that the employed linear multiplicative bridge function can recover the HF data exactly.
Again, 50 LF training points are used initially where this time 25 are dictated by the HF training locations
and the remaining 25 points are picked via latin hypercube sampling subject to a distance constraint. Again,
whenever a HF point is added via the dynamic training point algorithm the corresponding LF point is added
to the set as well.

Three-dimensional Analytic Test Function

In Figure 13 the performances of ALOS with two clusters and a global kriging surrogate for a three-
dimensional analytic test function are compared. All models started with the same 43 = 64 equidistantly
distributed training points. Then the adaptive training point framework added three training points per
iteration until a maximum amount (121) was reached. The function is given by

h(x, y, z) = sin[21(x− 0.9)4] cos[2(x− 0.9)] + (x− 0.7)/2 + 2y2 sin[xy] + 3z3 sin[xyz]
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Figure 13: RMSE (left) and maximum error (right) between the three-dimensional truth model and ALOS
with 2 clusters as well as a global surrogate as a function of number of high-�delity training points.
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One can infer that ALOS outperforms the global approach in the end for both function value only (F) as
well as function and gradient values (FG). Figure 14 shows the domains of the two clusters and the training
point distribution at the end of the simulation. One can observe that the dynamic training point algorithm
placed new training points especially in the second (red) cluster (which also features the largest θ values as
shown in Table 2).

Figure 14: Plot of Πk(x) using the �nal 121 points. Di�erent colors correspond to di�erent clusters. The
highest color intensity within each cluster corresponds to Πk(x) = 1.

The local kriging and gradient-enhanced kriging (GEK) models have again di�erent optimum length
scales θ = [θx, θy, θz] in the partitioned input space as the global kriging and GEK as shown in Table 2, again
suggesting that the ALOS approach has the potential to be better at modeling the di�erent characteristics
in the function pro�le.

Number of clusters Length scales, θ
kriging
1 [0.27, 0.18, 0.28]
2 [0.09, 0.10, 0.19], [0.24, 0.20, 0.24]
GEK
1 [0.84, 0.51, 0.33]
2 [0.81, 0.44, 0.26], [0.51, 0.29, 0.18]

Table 2: Optimum length scales for kriging and GEK using 1 and 2 clusters in three dimensions using 64
training points.

Figure 15 shows the performance with enhancement through low-�delity data. The LF data tends to
reduce the errors for up to 100 high-�delity training points (compare dashed and solid lines in same color).
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Figure 15: RMSE (left) and maximum error (right) for ALOS with 2 clusters and a global surrogate both
enhanced with low-�delity data as a function of number of high-�delity training points in three dimensions.

The LF data is governed by

hl(x, y, z) = (g − 2.0 + x+ y + z)/(5.0 + 0.25x+ 0.5y − 0.75z)

which implies again that the employed linear multiplicative bridge function can recover the HF data exactly.
This time 150 LF training points are used initially where 64 are dictated by the HF training locations and
the remaining 86 points are picked via latin hypercube sampling subject to a distance constraint. Again,
whenever a HF point is added via the dynamic training point algorithm the corresponding LF point is added
to the set as well.

4.2 Transonic CFD Example

To demonstrate the true potential of the developed dynamic variable-�delity locally optimized surrogate
model another transonic CFD example is considered, which this time involves the steady turbulent �ow
around a NACA 00xx airfoil. However, a Reynolds-averaged Navier-Stokes (RANS) simulation correctly
predicts shock-induced boundary layer separation for larger Mach numbers which is entirely missed by lower
�delity Euler simulations. This is especially prevalent for the computation of the lift coe�cient where Euler
does not exhibit the same trends as RANS and is thus unsuitable as low-�delity trend model. Thus, the
variations of the drag coe�cient, Cd, with changes in Mach number (0.6 ≤M∞ ≤ 1.2), angle of attack
(0◦ ≤ α ≤ 4◦) and thickness to chord ratio (4% ≤ tc ≤ 12%) are studied here. The high-�delity level is given
by RANS simulations using Fun3d [40] with the Spalart-Allmaras turbulence model [41]. The computational
mesh consists of 37,014 hexahedral elements. An �exact� database is obtained from RANS �ow solves on a
Cartesian mesh of 31× 9× 9 = 2511 equispaced nodes and is used for comparisons. The low-�delity level
is given by the �nite-volume solver SU2 [29, 30] in Euler mode employing a mesh which consists of 10,216
triangular elements. One low-�delity simulation runs about �ve to ten times faster than the corresponding
high-�delity simulation. Figure 16 compares the two �delity levels in the domain of interest. One can see
that the low-�delity trends match the high-�delity one which is encouraging for the use of a variable-�delity
approach.

In Figure 17 the performances of ALOS with two clusters and a global model with and without the
enhancement of lower �delity data is shown. All models started with the same 33 = 27 equally distanced HF
training points. Then the adaptive training point framework added three HF training points per iteration
until a maximum amount (63) was reached. When lower �delity data was used the initial locations again
coincided with the HF training points and the remaining points were picked via latin hypercube sampling
subject to a distance constraint. Here, 50 low-�delity points were employed. Also, similar to the analytical
function examples whenever a HF point is added via the dynamic training point algorithm the corresponding
lower �delity point is added to the set as well. One can observe that the VFM yields more accurate results
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Figure 16: Left: Three isosurfaces of the two �delity levels. Right: Contours of Cd for the lowest and highest
thickness to chord ratio.

compared to using the high-�delity data alone even when the cost for obtaining the lower-�delity samples is
taken into account. This is especially true at the beginning of the simulation. ALOS on the other hand does
not perform well at the beginning as the individual clusters have too few training points. However, after 39
HF training points are reached ALOS outperforms the global kriging approach.
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Figure 17: RMSE (left) and maximum error (right) for ALOS with two clusters and a global surrogate both
enhanced with low-�delity data as a function of number of high-�delity training points.

Figure 18 shows the exact and global VFM kriging isosurfaces for three di�erent Cd values at the end
of the simulation (using 63 HF points and 86 LF points). It can be inferred that the global VFM is in
good agreement with the exact model and is able to capture the transonic behavior very well, demonstrating
its ability to model non-smooth functions. One can also observe that the dynamic training point selection
clustered HF points in the more varying transonic region as opposed to the relatively �at supersonic region.

Figure 19 shows the domains of the two clusters and the training point distribution again at the end
of the simulation. One can observe that the dynamic training point algorithm placed new training points
especially in the blue cluster which covers the steep �ank due to changes in the Mach number.
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Figure 18: Left: Three isosurfaces of truth model and global VFM kriging. Right: Contours of truth model
and global VFM kriging for the lowest and highest thickness to chord ratio.

Figure 19: Plot of Πk(x) for the aerodynamic database using the �nal 63 points. Di�erent colors correspond
to di�erent clusters. The highest color intensity within each cluster corresponds to Πk(x) = 1.
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5 Conclusion

The general goal of this work is to build highly accurate surrogate models at small overall computational cost
assuming that obtaining high-�delity training point information is the dominant cost factor. The strategy
to achieve this is to enhance surrogate modeling techniques by adaptively selecting training points as well as
utilizing derivative information and to employ lower �delity information as well as locally optimized surrogate
models. Especially the latter two strategies were explained in detail in this paper and all four strategies
were applied to one-, two- and three-dimensional analytic test functions demonstrating their potential.
The developed dynamic variable-�delity locally optimized surrogate models was also used for aerodynamic
database creations applied to the steady turbulent �ow around a NACA 00xx airfoil where the in�uence of
Mach number, angle of attack and thickness to chord ratio variations on the drag coe�cient are of interest.
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