
Ninth International Conferene on

Computational Fluid Dynamis (ICCFD9),

Istanbul, Turkey, July 11-15, 2016

ICCFD9-150

A Posteriori Stability Analysis of Finite-Volume

Methods on Unstrutured Meshes

Reza Zangeneh

1
, Dr. Carl Ollivier-Gooh

2

1,2
Department of Mehanial Engineering,

University of British Columbia, Vanouver, Canada

Corresponding author: r.zangeneh�alumni.ub.a

Abstrat: The new approah proposed here, improves the stability of unstrutured mesh �nite-

volume CFD alulations by moving verties in the mesh as a posteriori proess. In this proess, we

exploit the gradients of eigenvalues with respet to the loal hanges in the mesh to �nd diretions

and magnitudes of mesh perturbations that will make the Jaobian of a semi-disrete system of

equations negative semi-de�nite. This will ensure the energy stability of the system; onsequently

resulting in onvergene. Our numerial results have shown that the proposed method was able

to loate the problemati parts of the mesh responsible for instabilities as well as to modify the

glithes for several physial problems. It is onjetured that the failure of our method for some

spei� problems is probably due to the insensitivity of these problems to loal hanges in the

mesh. In these ases, the e�ets of boundary onditions and modes of the physial features are

dominant.
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1 Introdution

As the apabilities of omputational �uid dynamis software has grown, so too have the size and

omplexity of the problems to whih industrial users apply CFD. Even for expert users � who

understand how to generate meshes and hoose �ow solver options to get good solutions for routine

problems in their area of expertise � new large sale problems are hallenging: trial and error are

required to identify and resolve important �ow features and �nd a stable solution. Historially the

main tool for inreasing the solution auray has been either employing grid re�nement or high

order shemes. However, for real world appliation problems, the baseline simulation often pushes

the limits of available omputing resoures. Suh studies are often prohibitive due to instability

issues. This problem is partiularly hallenging sine ommerial CFD software typially handles

omplex problem geometries using unstrutured meshes, for whih auray and stability issues are

not as well understood as for strutured meshes. Thereby, with this rapid development of high
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order numerial methods omes the need for stability analysis. However, these studies are lagging

behind to fully understand and predit unstable features on general unstrutured meshes; hene

to remedy them. The lak of rigorous analysis tools to �x the instabilities along with the larger

time steps and more ompliated geometries for engineering purposes alls for a thorough stability

analysis.

The stability of numerial disretization methods depends not only on the methodology but also

on the mesh: bad features in a mesh far from any �ow features of interest an still have a deleterious

e�et on the stability or onvergene of a CFD solver. A thorough understanding of this onnetion

an provide guidane in the design of numerial methods or mesh generation that would improve

solver performane and robustness. In this paper, we use eigen-analysis to study and improve

the mathematial stability of the semi-disrete system of equations arising from unstrutured mesh

spae disretization. This analysis will hopefully enable us to predit instabilities and help to remedy

them prior to solving the problem. To the best of our knowledge, eigenvalue analysis has always

been used to �nd some upper bound and thresholds of stability suh as energy stability analysis

whih is attrative in both Finite element (e.g. [1℄) and �nite volume (e.g. [2, 3℄) ommunities; and

it has never been applied to modify mesh or �ow features as a ontrolling feedbak tool to stabilize

an unstable ase. With the aid of entropy and the notion that entropy should always inrease, many

other stability shemes have also been developed. These methods (e.g. see [4, 5, 6℄ and the referenes

therein) utilize entropy variables to devise entropy stable shemes for nonlinear partial di�erential

equations. However, all these various works have failed to provide an interative pratial tool to

automatially stabilize a disretized linear or nonlinear PDE on a general unstrutured mesh.

In this paper, we use eigen-analysis to study and improve the mathematial stability of the semi-

disrete system of equations arising from unstrutured mesh �nite volume spae disretization. This

approah has its roots in energy analysis (e.g. [3, 7℄). Energy stability for semi-disrete systems

requires that all eigenvalues have negative real part. Our goal is to stabilize a (linearized) PDE by

perturbing the mesh verties loally. To do this, we must predit the stability prior to the mesh

modi�ation and �nd the size and diretion of mesh perturbation that improves stability. The

rest of this paper lays out as follows: in Setion 2 we desribe how the gradients of the spatial

semi-disrete Jaobian with respet to mesh verties are alulated; in Setion 3, the diret and

optimization approahes for �nding the perturbation vetor are explained; after speifying whih

verties to perturb in Setion 4, the loal mesh modi�ation is applied to stabilize the unstable

problems in Setion 5. Moreover in Setion 6, in an alternative way to perturb the mesh we an

hange the disretization by inreasing the reonstrution stenil size of a olletion of ontrol

volumes to stabilize an originally unstable problem.

2 Gradients of the eigenvalues

From the energy stability analysis and the method of lines, we know that a (linear) PDE, disretized

in spae, produes a oupled set of ODE's suh as:

∂u

∂t
= R(u) (1)

du

dt
=

∂R

∂u
u = Au (2)
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is stable if and only if the Jaobian matrix A = ∂R
∂u

is negative semi-de�nite whereas we assume the

transient growth is negligible and remains zero. To obtain the semi-disrete Jaobian matrix, A,

for non-linear problems we use a lower order solution at the steady state to linearize the Jaobian

matrix.

In preliminary unpublished work, we realized that eigen-analysis of semi-disrete systems for re-

alisti �nite volume disretization an aurately predit the onvergene rate for an impliit solver.

This revelation motivated us to use eigen-analysis to show stability and gradients of eigenvalues to

predit how spetral stability will hange upon hanges in the mesh. In other words, the key to our

work is the ability to predit hanges in the eigenvalues with hanges in the mesh. The derivatives of

eigenvalues and eigenvetors of general matries dependent on multiple variables have been studied

by many (e.g. see [8, 9℄ and referenes therein). If the matrix eigenvalue problem of interest is

A(
−→
ξ )xi(

−→
ξ ) = λixi(

−→
ξ ) (3)

where xi is the ith right eigenvetor assoiated with the ith eigenvalue λi, then the eigenvalue

derivatives with respet to some parameter ξ (whih in our ase is the mesh oordinates vetor) are

obtained as follows:

∂

∂ξi
(Axi = λixi) (4)

yi(
∂A

∂ξ
xi +A

∂xi

∂ξ
=

∂λi

∂ξ
xi + λi

∂xi

∂ξ
) (5)

∂λi

∂ξ
= yi

∂A

∂ξ
xi with ondition : yi · xi = 1 (6)

Notie that we left-multiplied the equation 5 by the left (row) eigenvetor yi and normalized so

that yi · xi = 1. Amongst the ways to approximate the gradients of the eigenvalues suh as doing

the �nite di�erene on eigenvalues or reverse di�erentiation, we hoose to do �nite di�erenes on

the Jaobian matrix instead, sine the former is expensive owing to the di�ulty of eigen-problem

and the latter is simply muh harder to do. The derivative of the A matrix with respet to the

mesh entities is approximated using �nite di�erenes:

∂A

∂ξ
=

A(
−→
ξ + δ

−→
ξ )−A(

−→
ξ )

∥

∥

∥
δ
−→
ξ
∥

∥

∥

(7)

Hene, using equation 6, we are able to predit hanges indued in eigenvalues by the mesh

perturbations. Fig. 1 shows that for a good range of ξ parameter, the gradient of the Jaobian

more or less does not hange for a spei� mesh loation. The horizontal axis in Fig. 1 is the size

of the ξ parameter in Eq. 7 where the length sale is the smallest edge inident on eah vertex.

This analysis validates as well as further substantiates the use of �nite di�erenes to alulate the

gradients of the Jaobian matrix.
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Figure 1: Sensitivity map of the gradient of the Jaobian matrix with respet to perturbation

parameters for an invisid Burgers' problem

3 How to �nd the perturbation vetor?

All in all, using energy stability results along with the knowledge of eigenvalue derivatives upon any

mesh perturbation, we an tune the perturbations in a way suh that the real parts of eigenvalues

(speially the unstable ones) derease. However, this is not an easy task, as naively perturbing the

mesh to improve one eigenvalue may lead to destabilizing the other (stable) eigenvalues.

One intuitive way to perturb the mesh is to onsider all (right-most) eigenvalues separately.

Surely, the fastest route to stabilizing a single eigenvalue regardless of the other eigenvalues is to

perturb the mesh in the exatly opposite diretion of the gradient of the eigenvalue (steepest desent

method) whih means that the following inequality should hold:

ℜ{λorig}+△
−→
ξ ·

∂λ

∂ξ
≤ 0 (8)

This results in a perturbation vetor with the diretion and size of:

4



△ξ = −|k|ℜ

{

∂λ

∂ξ

}

With k >
ℜ{λ (ξorg)}

(

∂λ
∂ξ

)2
(9)

A ompliation arises when there are multiple unstable or nearly unstable eigenvalues due to

there being multiple perturbation vetors whih ould partly or ompletely ontradit eah other.

One way to solve this is to take a weighted average of these multiple perturbation vetors with

weights proportional to how positive (unstable) the orresponding eigenvalues are to gain a single

perturbation vetor. Another more sophistiated approah is to reform the problem to stabilize

all the unstable eigenvalues olletively. To do so, we minimize (negate) the real part of the right-

most eigenvalues diretly. The single perturbation vetor

−→
d = △ξ, should satisfy all the linear

inequalities (Eq. 10) required to stabilize the problem:

ℜ{λj}+
−→
d ·

∂λj

∂ξ
≤ 0 1 ≤ j ≤ M (10)

where M is the number of unstable eigenvalues. With hoosing the optimization variables as the

entities of the perturbation vetor, the linear optimization problem is de�ned as:

min







M
∑

j

sj







where sj =

(

ℜ{λj}+
−→
d ·

∂λj

∂ξ

)

(11)

where sj are the negative of the slak variables (positivity of eah inequality), subjet to the linear

onstraints sj ≤ 0. The upper bound for the optimization variables are based on the loal length

sale to avoid any non-onformality or irregularity in the mesh after the modi�ation. In this ase,

eah perturbation size at eah vertex is kept less that 10% of the length of the longest inident

edge. Sine we have a linear optimization problem, the optimum solution to the summation of

the objetive funtions is equivalent to the solution of the multi-objetive minimization of eah

eigenvalue. In other words, instead of minimizing the slak variable for eah eigenvalue separately,

we an minimize the summation of the slak variables.

4 Whih verties to perturb?

The key to our analysis is to approximate

∂λj

∂ξi
. However we do not need to alulate this for the

whole mesh as only part of the mesh is responsible for instabilities most of the time. We know that

the right eigenvetor is a mode of the solution. Therefore if a Jaobian matrix tends to have an

unstable solution, the right eigenvetors of the unstable modes will speify the parts of the mesh

where things have gone wrong. Moreover, there is no need for the exat alulation of the gradient

of the eigenvalues, as any approximate one is able to guide the mesh modi�ation in the right

diretion for better stability properties. Hene to approximate

∂λj

∂ξi
:

1. Span the right eigenvetor (e.g., see Fig. 2a)

2. Pik up the largest omponents of the eigenvetor

3. List all CVs orresponding to these omponents as well as the ones in their Jaobian �ll (e.g.,

see Fig. 2b)
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4. Perturb verties loated on these CVs
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(a) Span of the right eigenvetors for an invisid

burgers problem

(b) Verties on the ontrol volumes of the Jaobian
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Figure 2: How to hoose verties for perturbation

5 Mesh improvement

A preliminary test ase has been done to showase the appliability of our approah in stabilizing

an initially unstable problem. In this ase, a 3D MUSCL Advetion problem has been stabilized

by pushing its single unstable eigenvalue to the left half omplex plane (see Fig. 3a). As is obvious

from Fig. 4, by perturbing only four verties the problem has transfered to a stable region. The

stability an also be observed from the plot of residual over the iterations (as is seen from Fig. 3b)
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Figure 3: Spetral map before and after the mesh perturbation for a 3D 2nd order MUSCL advetion.

Time stepping is done by bakward Euler.

Figure 4: Mesh modi�ation to stabilize the problem for a 3D 2nd order MUSCL advetion

Note that the Jaobian in the linear advetion problem is only a funtion of mesh oordinates

and onstant wave speeds and is ompletely independent of the solution. This in turn asserts

that perturbing the mesh in a diretion predited by the gradients of the eigenvalues is indeed a

proper approah to gain stability. However, for more ompliated nonlinear problems, more are

and thoughts need to be put into onsideration as the Jaobian is also a funtion of the solution.

Another ompliation arises when there are multiple unstable or near instability eigenvalues;

thereby there are multiple perturbation vetors whih ould partly or ompletely ontradit eah

other. To mitigate this problem we opted to put more emphasis on the rightmost eigenvalues, so as

to disregard an eigenvalue in alulating the perturbation vetor, in ase it was ontraditing the

resultant perturbation vetor alulated solely from the rightest-most ones.

The �rst trial for non-linear problems is done using invisid Burgers' problem where the Jaobian

of the semi-disrete system is no longer independent of the solution. To linearize the Jaobian, we

uses a �rst order solution to approximate the seond order Jaobian. By doing so, we will speify

the unstable eigenvalues as well as parts of the mesh responsible for these instabilities. Fig. 5b

shows how modifying the mesh loally has hanged the unstable eigenvalues in Fig. 5a to the left

half of the omplex plane.
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Figure 5: Before and after mesh perturbation for an invisid Burgers' problem

6 Seletive inrease of the stenil size

Haider et al. [2, 10℄ showed that for a linear advetion problem inreasing the stenil size of the

solution reonstrution (see [11, 12, 13℄ and the referenes therein on how to do the reonstrution)

have a positive e�et on stabilizing the problem. To do this, they introdued a speial norm of part

of the reonstrution matrix alled reonstrution map, and showed a relative orrelation between

the value of this parameter and the stability of the reonstrution. The main takeaway point was

that adding another layer of ontrol volumes to the solution reonstrution in spaial disretization
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will make the problem more stable. Therefore in a parallel attempt to mesh modi�ations, we will

hange the disretization. We have observed that by using the right eigenvetor of the unstable

mode, we an herry-pik a small number of ontrol volumes (instead of the whole mesh) with large

values in the eigenvetor to inrease their stenil size. Fig. 6 shows how inreasing the stenil size

of only 6 ontrol volumes out of the 1382 ontrol volumes for an invisid burgers problem stabilizes

the four existing unstable eigenvalues. In this way, without any hanges in the mesh, we were able

to stabilize the problem by hanging the spatial disretization loally.
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Figure 6: Invisid Burgers in a hannel with 1382 CVs

7 Conlusion

In this work, we studied stability and more spei�ally a new approah to stabilize PDE's governing

omputational �uid dynamis problems. In the proposed approah, whih to the best of our knowl-

edge, is the �rst of its kind perturbs the mesh verties loally so that the new mesh is more suitable

for the PDE of interest. In our quest to improve stability, we exploit the gradients of eigenvalues

as feedbak tools to determine in whih diretion and how muh the mesh verties should be per-
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turbed so that the Jaobian of the semi-disretized set of equations have more amiable eigenvalues.

The less positive these eigenvalues are, the more stable the semi-disrete system of equations are.

Our linear Advetion results along with nonlinear invisid Burgers' problem showase a proof of

onept and paves the way for stabilizing more ompliated and nonlinear problems. Moreover, in

a parallel work to mesh modi�ations, we showed that hanging the disretization loally, espeially

the reonstrution stenil, an stabilize the initially unstable problems.
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