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Abstract: This paper presents a solution algorithm for Large Eddy Simulations-Immersed Bound-
ary (LES-IB) approach for laminar/turbulent flows with large temperature and density variations.
The proposed algorithm is based on the projection method and low Mach number approximation.
The IB method is implemented in a variant of direct forcing. The time integration is performed
using a predictor-corrector approach and the spatial discretization is based on high-order compact
schemes on half-staggered meshes. The accuracy and stability of the proposed method is verified
in 2D/3D simulations of the flow around cylinder and sphere. A comparison with the solution
obtained using a body-fitted approach shows very good agreement of the obtained results. The
LES-IB is then applied for computations of 3D turbulent flow in a wavy channel. We analyze an
influence of wall shape on heat exchange and we study how the waviness parameters (amplitude,
frequency) affect the flow behaviour, the Nusselt number and a pressure drop.
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1 Introduction
Large eddy simulation (LES) method gives very deep inside into physical flow behaviour and provides
detailed information on both steady and unsteady flow phenomena. On an academic ground LES is often
used with precise high-order compact and spectral/pseudospectral methods, which use is limited to rather
simple computational geometries and also by boundary conditions enforced by the type of the method
(eg. periodic boundaries for Fourier method). The easiest solution which allows using of the compact
methods in complicated domains and/or with solid objects in the flow domains is to combine them with the
Immersed Boundary (IB) method. Advantage of the IB method over the classical approach with body-fitted
meshes is that the flows can be solved on Cartesian grids and the objects immersed in the flow domain
can be arbitrarily complex as there is no need to design the mesh around. It was demonstrated that IB
method can be successfully applied together with the spectral methods [1] and finite/compact difference
methods [2, 6, 7], as well as in the context of LES applications [3, 4, 5]. Recently, the IB method has been
applied for low Reynolds number laminar flows with small density variations, i.e. within the Boussinesq
approximation [8]. In the present paper we extend the IB approach to low Mach number turbulent flows
with density/temperature differences in the range 1− 5. We apply the IB method in combination with the
solution algorithm formulated in [9, 10]. We focus on development of the LES-IB approach, its verification
and then application in a complex flow domain. We study an influence of wall shape on heat exchange and
pressure drop in a 3D wavy channel.
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2 Governing equations and solution procedure
We consider a low Mach number flow described by the continuity equation, the Navier-Stokes equations and
the energy equation, which in the framework of an LES-IB approach are defined as:

∂tρ̄+∇ · (ρ̄ũ) = 0 (1)

ρ̄ (∂tũ + (ũ · ∇)ũ) +∇p̄I = ∇ · (τ + τSGS) + f IB (2)

ρ̄Cp

(
∂tT̃ + (ũ · ∇)T̃

)
= ∇ ·

(
(κ+ κSGS)∇T

)
+ dp0/dt+ fIBT (3)

where the bar and tilde symbols denote filtered quantities [11]. The set of Eqs. (1)-(3) is complemented
with the equation of state p0 = ρ̄RT̃ with p0 and R being the thermodynamic pressure and gas constant,
respectively. In open flows with inlet/outlet boundaries p0 is constant in space and time [10]. The variables
u, ρ, p, T represent the velocity vector, density, pressure and temperature. The variable Cp is the heat capacity
at constant pressure and the variables τ and κ are the viscous stress tensor and thermal conductivity. The
molecular viscosity (µ) is computed from the Sutherland law and κ = µCp/Pr, where Pr is the Prandtl equal
to 0.71. The term τSGS = 2νtS is the sub-filter tensor, where S is the rate of strain tensor of the resolved
velocity field and νt is the sub-filter viscosity [12]. The sub-filter heat conductivity κSGS is modelled as
κSGS = ρ̄νtCp/Prt, where Prt is the turbulent Prandtl number equal to 0.6. The source terms f IB and fIBT
originate from the IB method and their role is to act on a fluid in such a way as if there were a solid object
immersed in the flow domain.

Sub-grid modelling. In this paper we apply the model of Vreman [12] in which the sub-filter viscosity is
defined as:

νt = Cv

√
Bβ

αijαij
(4)

αij =
∂ūj
∂xi

, βkl = ∆2αmkαml (5)

Bβ = β11β22 − β2
12 + β11β13 − β2

13 + β22β33 − β2
23 (6)

where the constant is equal Cv = 0.025. In the present implementation of the IB method the sub-grid
viscosity is computed in all mesh points, also in these located in the solid-body regions.

2.1 Solution algorithm
The solution algorithm for Eqs. (1-3) is formulated in the framework of a projection method [13] for pressure-
velocity coupling with a direct forcing approach for the IB method [14]. The time integration is based on a
predictor-corrector approach (Adams-Bashforth/Adams Moulton) and the spatial discretisation is performed
using 6th/5th order compact difference and WENO (Weighted Essentially Non-Oscilatory) schemes on half-
staggered meshes [9, 10]. In the framework of the IB approach the solution algorithm is defined as follow.

Predictor step. Generally, we assume that the time-step (∆t) can vary as the flow velocity changes in the
successive time-steps, ..., n − 1, n, n + 1, .... With this assumption the 2nd order Adams-Bashforth method
is given as:

ρ̄ũ∗ − ρ̄ũn

∆tn
=

(
1 +

∆tn

2∆tn−1)

)
Res(ũn)− ∆tn

2∆n−1
Res(ũn−1)−∇p̄nI︸ ︷︷ ︸

RHSu

+f IB (7)

T̃ ∗i − T̃ni
∆tn

=

(
1 +

∆tn

2∆tn−1)

)
Res(T̃n)− ∆tn

2∆n−1
Res(T̃n−1)︸ ︷︷ ︸

RHST

+
1

ρ̄Cp
fIBT (8)
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where Res(u), Res(T ) represents the convection and diffusion terms of the Nevier-Stokes and energy equa-
tions. The formulas for the source terms f IB and fIBT are discussed latter. The RHSu and RHST represent
the spatial terms from Eq. (2) and Eq. (3). The velocity field u∗i computed from Eq. (7) does not fulfill the
continuity equation (i.e. ρ̄t +∇ · (ρ̄ũ∗) 6= 0) and according to the projection method (see [13] or any other
book on CFD) it must be corrected using the gradients of pressure correction (p′) according to the following
formula:

ρ̄ũ∗∗ = ρ̄ũ∗ −∆tn∇p′I (9)

where p′ is computed from the Poisson equation:

∇ · (∇p′I) =
1

∆tn
[∇ · (ρ̄ũ∗) + ρ̄∗t ] (10)

resulting from the condition ρ̄t + ∇ · (ρ̄ũ∗∗) = 0. The density is computed from the equation of state
p0 = ρ̄∗RT̃ ∗ and its time derivative needed in (10) is disrcretized using 2nd order formula

ρ̄∗t =

[
(∆tn + ∆tn−1)2 − (∆tn)2

]
ρ̄∗ − (∆tn + ∆tn−1)2ρ̄n + (∆tn)2ρ̄n−1

∆tn∆tn−1(∆tn + ∆tn−1)
(11)

Corrector step. The 2nd order Adams-Moulton method is defined as:

ρ̄ũ∗ − ρ̄ũn

∆tn
=

1

2
(Res(ũ∗∗) + Res(ũn))−∇p̄nI︸ ︷︷ ︸

RHSu

+f IBMi (12)

T̃n+1 − T̃n

∆tn
=

1

2
(Res(T̃ ∗∗) + Res(T̃n))︸ ︷︷ ︸

RHST

+
1

ρ̄Cp
fIBMT (13)

Again, the velocity field ũ∗ does not fulfill the continuity equation and its correction is defined as:

ρ̄ũn+1 = ρ̄ũ∗ −∆tn∇p′I (14)

The equation ρ̄t +∇ · (ρ̄ũn+1) = 0 leads to the Poisson equation (10). Its solution allows us to correct the
velocity using (14) and to update the pressure field as:

pn+1 = pn + p′ (15)

The density is computed from p0 = ρ̄∗RT̃n+1 and the next time step begins.

IB source term. Assuming a stationary wall with a given wall temperature the IB source terms are
defined in terms of the phase-indicator function H(x) as:

f IB = H(x)× RHSu(x); fIBT = H(x)× RHST (x); with H(x) =

{
−1 for x ∈ Ωb
0 otherwise (16)

where Ωb denotes the solid body embedded in the computational domain. It is worth nothing that the source
terms presented in the above forms are only needed to formally express an impact of IB on the flow domain.
In practice, with the explicit time integration method the terms f IB and fIBT are not computed and the
IB method reduces to substituting ũ = uΩb

and T̃ = TΩb
for x ∈ Ωb, and to calculating the velocity and

temperature near the solid boundaries.

2.2 Near boundary interpolation
In the direct forcing IB method the velocity and temperature in the grid nodes inside the solid objects are
set equal to the velocity and temperature of the object, whereas their calculation on the fluid side requires
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Figure 1: Stepwise approach (left) and near boundary interpolation method (right).

a special treatment. There are two approaches schematically shown in Fig. 1. In the first approach, the
so-called stepwise, the boundary of the solid body is determined by a computational mesh. In the nodes
located at x ∈ Ωb we simply put ũ = uΩ

b and T̃ = TΩ
b , whereas outside of Ωb the values in the direct vicinity

of the boundary (bold nodes) are computed from the governing equations as in every other node at x ∈ Ωf .
It is easy to recognize that in this approach the solid boundaries is ’seen’ as if they had the stepwise shape
(see dark grey colour in Fig. 1 on the left side). The denser the mesh the more accurate is representation
of the real shape of the solid. In the second, more accurate approach, in the nodes lying near of the solid
the values of the velocity and temperature are interpolated based on the real location of the solid boundary
and the values in surrounding nodes on the fluid side (crosses in Fig. 1 on the right). In the present work
we apply this approach and use an interpolation formula proposed in [15] given as:

φ = b1 + b2x+ b3y (17)

for which the coefficient b1, b2 and b3 can be computed solving the system of equations:b1b2
b3

 =

1 x1 y1

1 x2 y2

1 x3 y3

−1 φ1

φ2

φ3

 (18)

where xi and φi are the values of the velocity and temperature in the locations 1, 2 and 3. Extension of the
above interpolation method to 3D cases is straightforward.

3 Results

3.1 Test computations: accuracy and stability
The test computations have been performed for two cases: (i) 2D laminar flow around a cylinder; (ii)
3D turbulent flow around a sphere. The former test case had to verify accuracy of the proposed solution
procedure and the latter its stability in simple 3D configuration. The computational meshes consisted of
128× 192 and 128× 192× 128 nodes compacted such that in the vicinity of the solid body (and inside) the
cell sizes were equal to 1/30 of the diameter of the cylinder or sphere, D. The computational domains were
10D × 15D and 10D × 15D × 10D. The uniform velocity (Uin) and temperature (Tin) were assumed at
the inlet. The computations were performed for the Reynolds numbers Re = UinD/ν equal to 40 for the
cylinder and 3700 for the sphere. The temperatures of the objects were equal to 2Tin and 5Tin, respectively.
The solution procedure stared from the zero velocity field everywhere in the domains and with the assumed
temperatures of the solids and Tin elswhere. The computations continued until the steady state had been
reached for 2D case or until the fully turbulent flow had developed in 3D case. Figure 2 shows the temperature
contours around the cylinder and the profiles of temperature in selected locations behind the cylinder. The
results are compared with the solution obtained using ANSYS Fluent code with body fitted mesh with
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Figure 2: Laminar flow around 2D cylinder.

the cell sizes near the solid objects similar as in the IB method. It can be seen that the agreement of
the results is excellent. Both the maxima of the temperature and its radial distribution are predicted
very accurately. Figure 3 shows 3D iso-surfaces of the temperature, vorticity module and Q-parameter:
Q = 1/2(SijSij − ΩijΩij) where Sij and Ωij are symmetrical and anti-symmetrical parts of the velocity
gradient tensor. Careful inspection of flow regions near the sphere did not reveal any suspicious oscillations
or other signs of instabilities (eg. temperature overshoots). Thus, one may conclude that the formulated
algorithm is very accurate and stable.

3.2 Flow in a channel with a wavy wall
An efficient method of intensifying the heat exchange in channels is to apply walls with wavy shapes.
From one side it increases an effective area of the heat transfer, and from the other it intensifies a mixing
(turbulence). In this work we assume a sinusoidal wall with two control parameters, amplitude (A) and
frequency (f). One should be aware that alteration of these parameters change not only the heat transfer
process but also the flow behaviour, among others a pressure drop ∆p along the channel. Knowledge of ∆p
enables to estimate the power (P) needed to force the flow at assumed flow rate (Q), P = ∆p × Q. The
larger waviness of the flow the bigger ∆p is, hence, we will analyzed the impact of A and f on both the
temperature field and ∆p.

The computational domain is shown in Fig. 4 with the location of the wall at: Asin(ωyf), with ω = 2π/Ly.
The length of the domain in the streamwise direction is equal to Ly/h = 4π, the height of the channel is
equal to Lx/h = 2 and the spanewise size is equal to Lz/h = π, where h is the half channel height. The
periodic boundary conditions are applied in the spanewise direction. The lower wall is modelled using the IB
method and the upper wall is treated in the classical way. The temperature of the walls are Tl = 2Tin and
Tu = Tin. The Reynolds numbers based on the the friction velocity uτ =

√
ν∂u/∂y|y=h, h and the kinematic

viscosity at Tin is equal to Reτ = 300. The computations were performed using three different meshes, their
parameters (the node numbers and characteristic cell sizes) are shown in Table 1. Near the upper wall the
nodes are compacted using the polynomial stretching function such that ∆y+ = ∆(yuτ/ν) < 1.
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Figure 3: Turbulent flow around sphere.

3.2.1 Simulation results

Table 2 shows the parameters of all analyzed cases. The accuracy of the obtained solutions was verified in
the test computations for Reτ = 10 with A = 0.25 and f = 6 for which the flow remained laminar (Case
1 in Table 2). The IB solutions were compared with the results obtained using ANSYS Fluent code and it
was found that in every spatial location the present results agreed almost perfectly. It is believed that the
same level of accuracy is obtained in turbulent regimes. A sample solution obtained for the Case F6A25 is
presented in Fig. 4. It shows instantaneous iso-surfaces of the Q-parameter (Q = 2500) and temperature
contours which clearly present the turbulent flow behaviour. Detailed analysis of the contours of temperature,
velocity and sub-grid viscosity in the region of the trough and top showed that the contours are smooth and
the sub-filter viscosity vanishes in the solid region. The fact that νt ≈ 0 in Ωb most likely results from a basic
assumption of the model of Vreman, i.e. the region Ωb is ‘seen’ by the model as not turbulent flow region.
Figure 5 shows the evolution of the Nusselt number and ∆p in the function of A and f obtained on the mesh
C. We notev that on the meshes A and B the obtained solutions were very similar and small differences had
only quantitative character. It can be seen that compared to the straight channel (case F0A00) the waviness
significantly changes the flow character. One may observe that for f = 4 and f = 6 starting from the second
top wave location the maxima of the Nusselt number remain at the same level and they depend only on
the amplitude of the waves. The larger are the values of A the stronger variation of the Nusselt number is
observed. On the other hand, the pressure did not exhibit such a strong dependence on A and its variations
along the channel are smooth.
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Figure 4: Instantaneous iso-surface of Q-parameter and temperature contours for the case F6A25.

Table 1: Parameters of the computational meshes for the flow in wavy channel. Maximum and minimum
∆x+ sizes for each configuration are expressed as: ∆x+

min,∆x
+
max.

Mesh Nx ×Ny ×Nz Nx,uni. in x−range ∆y+ ∆z+ ∆x+
uni., ∆x+

min, ∆x+
max

A 160× 240× 64 32 inx ≥ 1.7 5.806, 0.998, 5.806

B 176× 240× 64 48 inx ≥ 1.7 15.77 14.96 3.829, 1.000, 5.944

C 192× 240× 64 64 inx ≥ 1.7 2.857, 0.978, 6.425

4 Conclusions
The paper presented the solution algorithm for Large Eddy Simulation - Immersed Boundary method for
variable density flows analyzed in a framework of the low Mach number approximation with large den-
sity/temperature variations. The test computations performed for laminar flow regimes and comparisons
with the results obtained form the simulations performed using a classical body-fitted mesh proved the high
accuracy of the proposed technique. The computations carried out for turbulent flows around the sphere
and in the channel with the wavy wall showed that it can be used also in complex flow domains. In all the
cases the obtained solutions were stable and exhibited expected behaviour.
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