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Abstract: The versatile ADER scheme [1] is cast in a multilevel framework (ML-ADER) for fast
solution of linear hyperbolic PDEs. The solution is cycled through spatial operators of decreasing
accuracy while retaining highest-order accuracy by the use of a forcing function. Results are
obtained for benchmark problems in computational aeroacoustics at a much reduced computational
cost.
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1 Introduction

Linear hyperbolic PDEs govern behaviour of linear traveling waves in aeroacoustics and electromagnetics.
Numerical schemes used to solve such systems are required to preserve phase and amplitude over large com-
putational domain and long simulation time. This requires schemes with very low dispersion and dissipation
errors. Dissipation errors can be reduced by the use of a higher-order method. Dispersion errors in turn can
be reduced either by using a higher-order scheme or by a numerical scheme optimized for minimum errors
over a limited range of wavenumbers. Cunha and Redonnet [2] recently showed that spectrally optimized
schemes may not be suitable for well-resolved waves since they can result in overall greater error compared
to uniformly higher-order accurate schemes. Uniformly higher-order schemes may prove to be more e�ective
in reducing dispersion and dissipation errors, especially in the case of well resolved waves.

However, a major drawback of higher-order schemes, is the high computational cost per-grid point.
The use of coarser grids resulting from a more relaxed Points-Per-Wavelength (PPW) criteria in case of
higher-order schemes results in reduced number of computations compared to lower-order schemes. On the
other hand, higher cost per-grid point may actually result in an overall increase in computational cost for
higher-order schemes. Traditionally, Multi-Grid (MG) methods have been e�ectively used for accelerating
convergence of iterative solvers resulting from numerical discretization of PDEs [3]. In the MG method, the
error is progressively smoothened out by cycling through a hierarchy of successively coarser grids (h-MG) or
through a succession of lower-order spatial reconstruction (p-MG) or a combination of both. However, MG
methods based on smoothing properties of iterative solvers are best suited for driving numerical solution of
boundary value problems to an accelerated steady state [3] and may not be appropriate for the time accurate
solution of travelling waves governed by hyperbolic PDEs.

A Multi-Level (ML) method was developed in Ref.[4] for fast computation of travelling linear waves
governed by linear hyperbolic PDEs. In this method, higher-order accuracy is inexpensively and exactly
maintained at coarser approximations in the advection process which characterizes time-dependant linear
wave propagation. This is achieved by cycling the solution through successively lower orders of reconstruction
in the solution process. The relative truncation error (τ) between two consecutive levels is used as a forcing
function to enforce highest-order accuracy at lower levels while retaining time accuracy. The ML method
in a Finite-Volume Essentially-Non-Oscillatory (ENO) framework was successfully implemented for solving
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problems in electromagnetics and aeroacoustics [4, 5]. In this paper, we extend application of the ML
algorithm to the versatile ADER (Arbitrary higher order DERivatives) scheme (ML-ADER).

The ADER scheme is especially compatible with the ML framework because of its high spatial and
temporal accuracy, along with �exibility of reconstruction [1]. In the ML-ADER framework, highest-order
accuracy is uniformly maintained when cycling the solution through successive lower-order approximations
while solving the linear hyperbolic PDE. In this study, sawtooth and frozen-τ variants from MG methods
are implemented for the ML-ADER method. In the sawtooth version, a single time-step is executed at
all including lowest level (ν = 1), whereas in the frozen-τ variant, multiple time-steps are performed at
the lowest level (ν > 1) while maintaining highest-order accuracy, thereby further reducing computational
cost. In addition, error analysis for the ML-ADER method, along with saving in computing cost due to
implementation of the multilevel framework, is presented.

2 ML-ADER Method

2.1 Multilevel Method

Consider a system of hyperbolic Partial Di�erential Equations (PDEs) in 2D,

Ut + Fx + Gy = 0 (1)

where, U = [u1, u2, ..., un]T is a vector of conserved variables and F = [f1(U), f2(U), f3(U), ..., fn(U)]T ,
G = [g1(U), g2(U), g3(U), ..., gn(U)]T are the �ux vectors in x, y directions respectively. The semi-discrete
formulation of the given hyperbolic PDE resulting from the �nite volume approximation is given as,

dUi

dt

∣∣∣∣
n

= Rnp =
−1

Vi

N∑
j=1

F∗j .n̂j lj

∣∣∣∣∣∣
n

(2)

Where, F∗ is the numerical �ux [F,G] at jth face of ith Finite-Volume (FV) cell. lj is the length of the
jth face and n̂j is a unit normal [nx, ny] to the jth face. p is the order of the interpolation-polynomial used
for data reconstruction. For p = 0, this will yield traditional �rst-order �nite volume scheme. n indicates
the time level at which computations are performed. Thus, Rnp is the pth-order �ux-residual in the ith �nite
volume at time level n.

In the conventional �nite volume numerical schemes, equation(2) is integrated numerically to advance
the solution in time. At each time-step, a pth order polynomial is used for data reconstruction. This results
in uniformly pth-order accurate single-level FV scheme. In the ML method however, the solution is cycled

through successively coarser approximations. Thus, after computing R(n−1)
P , computations at level n are

performed using (p− 1)th order polynomial. To retain higher-order accuracy at coarser approximations, the

relative truncation error between R
(n−1)
p and R

(n−1)
p−1 is used as the forcing function. The relative truncation

error (τ) between two consecutive orders of reconstruction is de�ned as,

τnp−1 = R(n−1)
p −R(n−1)

p−1 + τ (n−1)p (3)

At the highest level (p = m), the forcing function τm = 0. The modi�ed residual at time level n is then
de�ned as,

R̂np−1 = Rnp−1 + τnp−1

The resultant ODE is given as,
dUi

dt
= R̂p−1 (4)

At time level n, equation(4) using the modi�ed residual R̂p−1 is integrated numerically to advance the
solution.

The modi�ed residual R̂p−1 = Rp−1 + τp−1 using a (p − 1)th-order reconstruction in a standard �nite
volume formulation turns out to be pth-order accurate under the condition of local linearity [5]. Further
it can be argued that at all levels of approximation, highest-order accuracy can be retained by successive

2



Un Un+1

R
p

n

Un+1

R
p-1

n

τ
p-1

n+1

R
p-1

n+1
τ

p-1

n+1

R
p

n+1
Un+2

Un+2

R
p-2

n+1

R
p

n+2

R
p-2

n+2

Un+3

R
p-2

n+2

Solve
ODE

Solve
ODE

Solve
ODE

Where,
ODE := { d(U) / dt = R

p 

 n = time level,
 p = order
 .τ = Truncation error 
  

τ
p-2

n+2

τ
p-2

n+2

τ
p-3

n+3

τ
p-2

n+2

}

Figure 1: ML Algorithm: Addition of the Truncation Error as the Forcing Function

addition of τ as a forcing function to lower-order residuals. This process is illustrated in Fig.1. Since the
computational cost of polynomial reconstruction is signi�cantly lower for lower orders, cycling in lower-order
accurate approximations reduces overall computational cost.

2.2 ML-ADER Implementation

The ADER scheme (Arbitrary high order scheme, which utilises the hyperbolic Riemann problem for the
advection of the higher orderDERivatives) is based on the MGRP (Modi�ed Generalized Riemann Problem)
scheme of Toro [6]; which in turn is a simpli�cation of the Generalized Riemann Problem (GRP) scheme of
Ben-Artzi and Falcovitz [7]. Schwartzkop� and Toro further developed the ADER scheme for linear systems
[1, 8]. Application of the ADER scheme to non-linear hyperbolic problems, as well as 3D generalization were
carried out by Titarev and Toro [9, 10, 11]. ADER schemes are found to be especially suitable for wave
propagation because of dampening of the dispersive modes thereby preserving wave phase and amplitude
[1]. A brief description of the ADER method is presented in the following section.

A Riemann problem arising from piecewise polynomial data is known as the Derivative Riemann Problem
(DRP) [12]. Solution of the DRP yields the state variable, as well as higher-order spatial derivatives of the
state variable at cell interfaces. Corresponding time-derivatives can be obtained using the Lax-Wendro�
procedure which links time-derivatives to the spatial derivatives. Time-derivatives of the state variable at
interfaces in turn can be used for the Taylor series approximation of time-evolution of the state variable.
Thus, in the ADER scheme, higher-order approximation to the state variable along the t-axis is obtained
by combining higher-order spatial reconstruction and �nding solution of the DRP at cell interfaces[12]. The
(Kth-order) Taylor series expansion of the state variable is written as, (note, ∂

∂t is written as ∂t and
∂
∂x as

∂x)

UADER(τ) = Uface(0+)︸ ︷︷ ︸
1

+

K∑
k=1

[
∂
(k)
t Uface(0+)

] τk
k!︸ ︷︷ ︸

2

(5)

where, the �rst term on the right hand side is the solution of the conventional Riemann problem based
on the discontinuity in the state variable at cell interfaces (Godunov state). The second term is obtained
by �rst converting the time derivatives into spatial derivatives using the Lax-Wendro� procedure and then
solving K − 1 DRPs at the cell interface for obtaining the space derivatives at the interface. For a 1D linear
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system, kth DRP is given by,

∂t(∂
(k)
x U) + Aface∂x(∂(k)x U) = 0 (6)

where,

∂(k)x U(x, 0) =

{
∂
(k)
x UL(0) if x < 0,

∂
(k)
x UR(0) if x > 0.

For linear systems, the coe�cient matrix Aface is constant. The direction of characteristic waves at
the interface is found out only once during computation of the Godunov state. Same information can be
used when solving for higher-order derivatives. Further details regarding the ADER procedure and 2D
implementation can be found in Ref.[1]. Once the state variable value at interfaces is known, the numerical
�ux can be computed as FADER = AfaceU

ADER, whereAface is the constant coe�cient matrix andUADER

is the state variable vector at the cell interface obtained by solving equation (5). Then the evolution equation
(2) can be written as,

dUi

dt
= RADERp =

−1

Vi

N∑
j=1

FADERj .n̂j lj

where, FADER is the numerical �ux obtained with the ADER scheme. This in turn can be solved using the
Euler time-stepping given as,

Un+1
i = Un

i + ∆tRADERp (7)

where, ∆t is the time-step governed by the CFL condition. The numerical scheme given by equation (7) is
higher-order accurate both in space and time as a result of spatial-temporal coupling in the Lax-Wendro�
procedure.
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Figure 2: ML Algorithm: Cycling the Solution Through Successively Coarser Approximations

The ML-ADER method can be summarized as,

• De�ne number of levels in each cycle (m) and total number of cycles (N)
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• At the highest level (p = m), Compute RADERp and RADERP−1 at time level 0, also τ0 = 0

• Compute τ1 = [RADERp=m −RADERp−1 ]|0

• Advance to time-level 1 by updating the state variable

dU

dt
= RADERp=m + τ0

• At time-level 1, p = m− 1. Compute RADERp=m−1 and RADERP−1

• Compute τ2 = [RADERp=m−1 −RADERp−1 ]|1 + τ1

• Advance to time-level 2 by updating state variable solving

dU

dt
= RADERp=m−1 + τ1

• Continue recursively till the lowest order

• At the lowest order, p = 1,

� Continue adding τm at the lowest level for required number of frozen time-steps (ν). Note that
for a sawtooth cycle, ν = 1.

� Return to the highest-order accurate operator

• This �nishes 1 ML cycle. Continue the process for N cycles.

Fig.2 shows the ML method in a saw-tooth form, in which a single time step is executed at all levels of
approximation. Transition from the lowest order (1) to the highest order (m) does not require the forcing
function to be added.

3 Results and Discussion

3.1 Numerical Accuracy

Grid convergence for ADER
Order Cells L1 error L1 order L∞ error L∞ order
2 25 5.11E-02 - 1.16E-01 -

50 1.61E-02 1.67 4.94E-02 1.23
100 4.72E-03 1.76 2.04E-02 1.27
200 1.27E-03 1.89 8.36E-03 1.29

3 25 2.62E-03 - 4.46E-03 -
50 3.30E-04 2.99 5.46E-04 3.03
100 4.13E-05 3.00 6.60E-05 3.05
200 5.16E-06 3.00 9.29E-06 2.83

4 25 6.52E-04 - 1.94E-03 -
50 4.77E-05 3.77 2.07E-04 3.23
100 3.34E-06 3.83 2.44E-05 3.08
200 2.25E-07 3.89 2.66E-06 3.20

Table 1: Grid convergence study for the ADER scheme using ENO reconstruction
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Grid convergence for ML-ADER
Order Cells L1 error L1 order L∞ error L∞ order
2 25 5.11E-02 - 1.16E-01 -

50 1.61E-02 1.67 4.94E-02 1.23
100 4.73E-03 1.77 2.04E-02 1.27
200 1.28E-03 1.89 8.36E-03 1.29

3 25 2.63E-03 - 4.29E-03 -
50 3.30E-04 2.99 5.86E-04 2.87
100 4.13E-05 3.00 8.99E-05 2.71
200 5.17E-06 3.00 1.18E-05 2.93

4 25 6.51E-04 - 1.93E-03 -
50 4.78E-05 3.77 2.05E-04 3.24
100 3.34E-06 3.84 2.45E-05 3.06
200 2.28E-07 3.88 2.65E-06 3.21

Table 2: Grid convergence study for the ML-ADER scheme using ENO reconstruction

It can be analytically shown that the ML method retains high-order accuracy of the solution [4]. In order
to test the numerical accuracy of the scheme, the scalar linear advection equation

ut + aux = 0, a = 1

is solved on 1D domain [−1, 1] with periodic boundaries using ADER and the ML-ADER methods. A sine
distribution u(x, 0) = sin(πx) is used as the initial condition. The wave speed a is taken as unity. In both
the cases, the simulation is run for time t = 1 units. ENO reconstruction is used for both ADER and
ML-ADER �ux computation. In both ADER and ML-ADER simulations, timestep is kept su�ciently small
so that e�ect of timestepping is negligible.

L1-errors and corresponding L1-orders for the traditional ADER method are presented here in table 1.
In table 2, L1 errors and corresponding orders for ML-ADER method are shown. It can be seen, that the
numerical accuracy of ML-ADER method is comparable to that of traditional ADER scheme.

3.2 Application to CAA

In this paper, two problems from computational aeroacoustics are solved using the ML-ADER method. The
�rst problem [13] deals with propagation of acoustic waves in the upstream direction though a near-transonic
convergent-divergent nozzle.

The quasi-1D nozzle is described with the following area distribution,

A(x) =

{
0.536572− 0.198086 e−ln(2)(

x
0.6 )

2

, x > 0,

1− 0.661514 e−ln(2)(
x

0.6 )
2

, x < 0
(8)

Where, x ∈ [−10, 10].
In order to simulate the acoustic wave propagation, linearized Euler equations in 1D are solved.

Ut + AUx = S (9)

Where, U is the vector of the acoustic perturbations and A is the coe�cient matrix based on the background
�ow in the nozzle, given as,

U=

 ρ
u
p

 , A=

 u0 ρ0 0
0 u0

1
ρ0

0 γp0 u0

 (10)

ρ, u and p are density, velocity and pressure perturbation-variables respectively. The steady state values of
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Figure 3: Acoustic waves travelling in upstream direction in a subsonic nozzle: Comparison of di�erent spatial orders

of accuracy

velocity(u0), density(ρ0) and pressure(p0) correspond to steady state �ow through a converging-diverging
nozzle. These values can be found out either analytically or numerically. Analytical expressions for obtaining
steady-state values are given in Ref.[13]. The steady state value of Mach number at exit of the nozzle is 0.4.
A pulsating acoustic source is situated at the nozzle exit. The source term is given as, ρ

u
p


acoustic

= 10−5

 1
−1
1

 cos [ω(
x

1−M
+ t)

]
(11)

As the �ow in the nozzle is subsonic, acoustic waves travel in the upstream direction through the nozzle.
For computing the acoustic waves, the system of equations(9) is �rst decoupled into characteristic variables.
This is followed by higher-order reconstruction of state-variables and derivatives which in turn are used for
ADER �ux computations. Fig.3 shows acoustic pressure �eld computed with single-level ADER methods of
di�erent spatial orders. For these computations, the 1D domain is divided into 501 equi-spaced FV cells.
It is clear from the �gure, that higher order methods result in superior resolution of waves. Fig.4 shows
comparison of acoustic pressure �eld computed with conventional and multi-level ADER methods. Results
are obtained with saw-tooth and frozen-τ variants of ML-ADER method. A good agreement is seen between
single-level and multi-level results.

In the second example [14], acoustic scattering from a 2D circular cylinder is simulated using conventional
and multi-level ADER methods. For this simulation, a 2D system of linearized Euler equations is solved.

Ut + AUx + BUy = 0 (12)

Where, U is the vector of the acoustic perturbations and A,B are the coe�cient matrices, given as,

U=

 p
u
v

 , A=

 u0 ρ0c
2
0 0

1
ρ0

u0 0

0 0 u0

 , B=

 v0 0 ρ0c
2
0

0 v0 0
1
ρ0

0 v0

 (13)

where, u, v are velocity-perturbation components in x and y direction and p is the pressure perturbation
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Figure 4: Acoustic waves travelling in upstream direction in a subsonic nozzle: Comparison of conventional and

multilevel 3rd-order ADER methods

variable. Initially (at t = 0) u = v = 0 and

p = exp

[
−ln2

(
(x− 4)2 + y2

(0.2)2

)]
(14)

Also, the background velocity, u0 = v0 = 0.
At t > 0, an acoustic wave originating at x = (4, 0) propagates in all directions. This wave re�ects from

a circular cylinder of radius 0.5 units situated at (x, y) = (0, 0). Perturbation pressure at a point in the
far-�eld (at r = 5, θ = 900) is recorded at regular time intervals.

For this simulation, an axisymmetric grid consisting of 401 cells in θ direction and 201 cells in radial
direction is used. Moreover, only half of the domain is considered because of the geometrical symmetry of
the problem.

Fig.4 shows pressure history at a point A(r = 5, θ = 900) in far-�eld. Contour plot of pressure pertur-
bations are shown in Fig.6. It can be seen that, the results obtained with ML-ADER method (and frozen τ
variants) agree very well with the results from a conventional ADER method.
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Figure 6: Acoustic scattering from a 2D circular cylinder: A. Contour plot with traditional ADER scheme B. Contour

plot with ML-ADER method with ν = 1

3.3 Computational E�ciency

Theoretically, the multilevel algorithm results in fraction of the computing cost as that of the single-level
method of the same spatial order [4]. Table 3 shows computing time (in seconds) for simulating linear
travelling waves using a scalar linear advection equation with single as well as multi-level methods. ENO
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Computational Performance
Order / Number of CPU Time (S) Normalized CPU Time (WU) % Average
Levels FV cells ADER ML-ADER ADER ML-ADER Saving Saving (%)
2 50 0.33 0.16 1.00E+00 4.85E - 01 46.59

100 1.31 0.68 3.97E+00 2.06E+00 47.95
200 6.79 3.56 2.06E+01 1.08E+01 47.57 47.92
400 32.65 16.85 9.89E+01 5.11E+01 48.37
800 203.63 103.64 6.17E+02 3.14E+02 49.10

3 50 1.06 0.47 1.00E+00 4.43E - 01 55.03
100 4.6 2.02 4.34E+00 1.91E+00 56.08
200 25.04 10.81 2.36E+01 1.02E+01 56.85 56.60
400 123.66 53.25 1.17E+02 5.02E+01 56.93
800 805.82 337.57 7.60E+02 3.18E+02 58.10

4 50 2.52 0.95 1.00E+00 3.77E - 01 62.35
100 11.15 4.23 4.42E+00 1.68E+00 62.08
200 59.82 23.13 2.37E+01 9.18E+00 61.32 62.27
400 320.95 119.34 1.27E+02 4.74E+01 62.82
800 2112.37 786.29 8.38E+02 3.12E+02 62.77

Table 3: Saving in computing time with two-level and three-level algorithms

reconstruction procedure is used in all simulations. All simulations are performed on Intel i5 − 2500 CPU
(3.30GHz) running Linux.

In order to compare the computational performance of ML-ADER algorithm, computing time has been
normalized with the time taken by ADER method on coarsest grid. As number of cells on domain are
increased, Work Units(WU) required for both ADER and ML-ADER increase. However, WU required for
ML-ADER are signi�cantly less than WU for conventional ADER method. It can be seen that, ML-ADER
method results in signi�cantly reduced computing cost as compared to traditional ADER methods.

4 Conclusion

In this paper, a multilevel framework for the versatile ADER method is presented. The ML-ADER method
is found to achieve higher-order accuracy at much lower computational cost. The method is found to be
suitable for problems in computational aeroacoustics. The ML-ADER method does not require restriction
and prolongation operators and can be blended with the existing �nite volume framework.
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