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Abstract: In this paper, we present a novel two-level approach for design optimization of acoustic
liner panels that are commonly used to damp engine noise in turbofan engines. The method
combines an adjoint-based gradient search algorithm with a global search method applied on a
surrogate model. In this way, we effectively exploit the benefits of both approaches to achieve a
good compromise between computational effort and degree of freedom used in optimization. In the
first level, a global search is performed with few design parameters employing a Gaussian process
surrogate model. In the second level, taking the global optimal solution as the initial setting for the
refined design vector, an adjoint based gradient search procedure is started. The unsteady discrete
adjoint solver, which is an essential ingredient of the optimization framework, has been developed
using Algorithmic Differentiation (AD) techniques. The AD generates a robust discrete adjoint
solver, which solves the unsteady adjoint Linearized Euler Equations (LEE) backward-in-time.
The feasibility of the two-level approach is demonstrated by finding the optimal liner parameters
of a turbofan engine by-pass duct.
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1 Introduction
The noise pollution caused by increasing air traffic has been a serious environmental problem in residential
areas, which are close to big airports. Therefore, reducing the aircraft noise has been an important goal in
various national or supranational research activities, e.g. Horizon 2020 program initiated by the European
Union. Especially during take-off of airplanes, engine noise is the most significant sources of noise emis-
sion. Therefore, damping the engine noise is crucial in reducing the overall noise emission of an aircraft. In
modern turbofan engine design, passive noise damping of the engine noise through installation of acoustic
liner panels is a well established technique. These panels typically consist of a perforated top layer, called
face-sheet, and a honeycomb structure placed on top of a rigid back-sheet. During manufacturing process,
these liner panels are usually installed on the internal walls of the engine nacelle, both in the engine intake
and in the by-pass duct. Thanks to the recent achievements in acoustic impedance modeling, nowadays it has
become feasible to simulate the effect of acoustic liners on the engine noise in a Computational Aeroacoustics
(CAA) framework. As a result, it has become viable to make a rapid assessment of different possible liner
configurations by performing CAA simulations.

One crucial issue in the design of acoustic liners is the specification of liner parameters. To date, it
is common to specify the liner parameters either based on experimental knowledge or by performing trial-
and-error type of CAA simulations. However in recent years, it has become tempting to use numerical
design optimization studies to determine liner parameters. If the number of design parameters in these
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studies is only a few, gradient-free optimization methods can be applied. By increasing number of design
parameters, however, employing gradient-based algorithms coupled with an adjoint solver becomes more
and more attractive. In fact, if the dimension of the design vector is large, using adjoint solvers to evaluate
the gradient vector becomes essential since they can evaluate the gradient vectors at a fixed computational
effort. Therefore, optimization studies with a high degree of freedom become viable. Broadly speaking, the
adjoint approaches can be classified into two: continuous and discrete adjoint methods. In the continuous
adjoint method [1], one first derives the optimality conditions from the continuous optimization problem.
The resulting adjoint PDE is then discretised by using appropriate spatial and temporal schemes, and solved
using standard numerical methods. In general, continuous adjoint solvers are fast in run-time, but devel-
opment of them requires much effort. Furthermore, the maintenance of these solvers becomes a burden as
the underlying PDE solvers are subject to continuous modifications, e.g., new boundary conditions, new
physical models etc. As an alternative, using the discrete adjoint method, one derives the discrete adjoint
equation directly from the optimization problem written using the discretized state PDE. In general, devel-
oping discrete adjoint solvers is more straightforward. Therefore, discrete adjoint codes have found a wider
acceptance in CFD, especially for the large scale applications with complex geometries.

The discrete adjoint PDE solvers can be developed either by hand [2] or by using the Algorithmic Dif-
ferentiation (AD) techniques [3]. Using the so-called hand-discrete approach, one derives first the discrete
adjoint equation for the given objective function. In the derivation, the linearization of discrete residuals is
often performed using symbolic differentiation rules. A computer program is then written to implement to
solution scheme for the adjoint equation and to evaluate the gradient vector. Although the hand-discrete
approach usually leads to efficient adjoint solvers, the implementation is error-prone as the linearization is
performed by hand. Furthermore, similar to continuous adjoint solvers, any modifications in the objective
function or in the underlying state PDE solver result in reformulation and recoding in the adjoint part.

As an alternative to the hand-discrete approach, AD tools can be used to automatically generate discrete
adjoint solvers. In this way, the exact differentiation of the underlying PDE solver can be done without
much effort. Since all terms in the discrete residual can be differentiated exactly, adjoint codes generated by
AD tools are capable of computing sensitivities that are always accurate and consistent to the solutions of
the state PDE. Furthermore, the adjoint solver inherits robustness of the underlying PDE solver and does
not require special treatment, e.g., extra grid refinement, special tuning of solver parameters etc. Thanks to
these positive aspects, AD techniques have been successfully applied in developing discrete adjoint solvers
in the past for CFD and CAA applications [4, 5].

Although being computationally very efficient, in some cases, adjoint-based gradient search methods
may perform poorly since these algorithms tend to be trapped to local optima. In problems, in which the
response surface is fairly noisy, typically the optimization method stagnates after yielding some moderate
improvement within few cycles. In addition, gradient-based algorithms are usually very sensitive to the
initial value of the design vector. Therefore, a “bad" choice for the initial value, which is far from the
global optimum, may result in a poor performance. As a remedy to this problem, a global optimization
methods can be employed. For example, Evolutionary Algorithms (EAs) [6, 7], which try to imitate the
evolution process in the nature, are widely applied for design optimization problems. These algorithms,
however, are computationally expensive and they require a prohibitive amount of computational resources if
the number of design parameters is large. For this reason, in general, EAs are only applicable to limited prob-
lems with few design variables. In many cases, they are applied not directly to the full scale simulation but
in conjunction with surrogate modeling techniques such as radial basis functions or Kriging method [8, 9, 10].

In the present work, we suggest an efficient two-level design strategy that combines an EA based global
optimization using a surrogate model and a gradient-based optimization using a discrete adjoint solver gener-
ated by AD techniques. In this way, we benefit from both approaches, and try to achieve a good compromise
between computational effort and fidelity of the optimization. In the first level, a global search is performed
with few design parameters used to parameterize the liner. The surrogate model required for the EA is build
using a Gaussian process surrogate model. In the second level, taking the global optimal solution as the
initial setting for the refined liner parameterization, an adjoint based gradient search procedure is started.
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A similar optimization strategy for the aerodynamic shape optimization is suggested by Yim et al. [11].

This paper is organized as follows. In Section 2, the governing equations, the CAA solver and the acoustic
impedance modeling used in this work is introduced. In Section 3, we present the two-level optimization
approach. In Section 4, we introduce the annular by-pass duct configuration of fan test rig, which is used as
the test case to demonstrate the efficiency of suggested two-level approach. We also present the optimization
results, which are obtained by the liner optimization. Finally, we draw some conclusions in Section 5.

2 CAA Framework
In this section, we introduce the CAA framework used to simulate the sound propagation in the present
work. First the governing equations are briefly introduced. Then, we shortly mention the features of the
CAA solver and the acoustic impedance modeling used to model the damping of the liner.

2.1 Governing Equations
Since run-time requirements of full CFD simulations are too high for applications of practical relevance,
hybrid or zonal approaches are rather used to simulate the aeroacoustic phenomena. In these approaches,
typically the domain of interest is split into three different zones: the source zone, the propagation zone and
the far-field zone. Thanks to this splitting, different physical phenomena in each zone can be simulated using
optimized numerical methods and the computational effort can be significantly reduced. Inside the source
zone, there are several noise generation mechanisms present in the flow such as rotor-stator interactions or
perturbations occurring in the combustion chamber. These noise sources, either broadband or tonal, are in
general resolved using high fidelity CFD simulations. The propagation zone, on the other hand, is free of
acoustic sources so that the acoustic waves propagate inside the engine interacting with hard walls and liner
panels. In the far-field zone, the acoustic waves propagate in the surrounding medium until they are totally
dissipated. In the present work, we only focus on the propagation zone. In this region, the Linearized Euler
Equations (LEE) are appropriate to simulate the aeroacoustic wave propagation. The LEE equations, which
are derived from the Euler equations, are given in tensor notation as
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In the LEE equations, u′i is the oscillating part of the velocity component ui, p′ is the oscillating part of
the pressure, ρ′ is the oscillating part of density, ui is the mean velocity component, p is the mean pressure,
ρ is the mean density and γ is the ratio of specific heats. Compared to the Navier-Stokes simulations, in
which very fine grids are required, LEE simulations are much cheaper in terms of computational resources
as optimized spatial and temporal schemes tailored for CAA can be used.

2.2 CAA Solver
In the present work, we use the 3D finite difference code CAA code CFD-Noise of CFD Software Entwicklungs-
und Forschungsgesellschaft mbH Berlin to solve the LEE equations. The spatial scheme is the 7−point 4th
order Dispersion-Relation-Preserving (DRP) scheme developed by Tam & Webb [12]. The forward-in-time
integration is achieved by using the Low-Dissipation and Low-Dispersion Runge-Kutta (LDDRK) scheme
of Hu et al. [13], using the 2N storage form proposed by Stanescu et al. [14]. The boundary conditions
include hard walls and non-reflective boundary conditions such as the radiation boundary condition by Tam
[15] and Perfectly Matched Layer (PML) boundary condition proposed by Hu [16]. In order to eliminate
the parasitic short-wave components, a tenth-order low-pass filter is applied. Moreover, the Chimera grid
capability enables the CAA solver to handle with complex geometries.
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2.3 Acoustic Impedance Modeling using Extended Helmholtz Resonator Model
As far as the modeling of the liner is concerned, we use the Extended Helmholtz Resonator (EHR) model
suggested by Rienstra [17]. The EHR model was introduced as a high frequency extension of the classical
Helmholtz Resonator model and describes the impedance of a damped Helmholtz resonator. It is given in
frequency domain as

Z(iω) = Rf + iωmf − iβ cot

(
1

2
ωTl − i

1

2
ε

)
. (1)

In the above equation Z(iω) is the acoustic impedance and it is defined as the ratio between the complex
amplitudes of pressure p̂ and the velocity perturbation ûn in the normal direction, i.e., Z(iω) = p̂(iω)/ûn(iω).
The five model parameters Rf ,mf , ε, β and Tl used in Eq. 1 are positive real numbers. According to Rienstra,
Rf and mf correspond the resistance and reactance of the liner face sheet. Furthermore, compared to the
classical Helmholtz resonator model, the three modifications had been incorporated to the EHR model. First,
the parameter ε accounts for the dissipation due to damping in the fluid cavity. Second, the cotangent term
is scaled by the parameter β to obtain a varying cavity reactance. Finally, the time delay parameter Tl is
included in the model to account for the cavity depth.

The representation of the EHR model in the time domain is achieved by z−transformation, which is also
suggested by Rienstra [17]. The effect of the grazing flow is modeled by the Ingard/Myers boundary condition
[18, 19]. In time-domain, EHR model leads to a boundary condition in terms of velocity perturbation in the
normal direction:

∂u′n
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1
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− e−ε

mf
[µ(t− Tl)− (Rf − β)u′n(t− Tl)] + e−ε

∂u′n
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(t− Tl), (2)

where µ(t) is given by
µ(t) = p′ + u0 · ∇p′ − n · (n · ∇u0)p′.

In the present work, we take a parameterization such that the entire liner surface can be split into a
number of different patches. In this setting, the parameters of the EHR model are only allowed to vary
among the different liner patches. The number of patches taken for the optimization, on the other hand, is
specified by the user and thus can be arbitrarily large.

3 The Two-Level Approach
Since gradient-based optimization results are highly sensitive to the initial values, the initial setting for the
design parameters plays a crucial role in the success of optimization. In numerical design optimization of
acoustic liners, one can use values obtained from previous simulations and/or experimental results to initialize
the liner parameters at the beginning of optimization. However, these values are likely to be far away from
the global optimum and the reduction of the objective function achieved by the numerical optimization may
not be satisfactory. On the other hand, if only a single liner patch is used, the design vector has only five
parameters and applying an EA based optimization using a surrogate model becomes viable. In this way,
a better initial setting for the gradient-based optimization can be achieved. In the initial data acquisition
phase, which is required to train the surrogate model, first CAA simulations at a number of specified sample
design points are performed. Once the initial data set is available, a surrogate model is constructed. Note
that, at this stage the surrogate model approximates the true response surface only up to some accuracy.
Using the surrogate model, then a global search based on EA is started. Since evaluating performance of
new designs using the surrogate model is computationally much cheaper compared to CAA simulations, the
number of samples in the global search can be taken much larger than the number of samples taken for
the initial data acquisition. Once the "best" initial setting for the liner parameters is found, the number
of liner patches can be increased to enhance the fidelity of the optimization. At this second stage, using a
gradient-based optimization method coupled with an adjoint solver is appropriate. In Figure 1, the two-level
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First Level Global OptimizationFirst Level Global Optimization

Second Level Local OptimizationSecond Level Local Optimization

Design parameters: EHR model parameters (only 
single liner patch is taken, only 5 parameters). 

Optimization method: EA using the Kriging based 
surrogate model.

Design parameters: EHR model parameters
(multiple liner patches, large number of parameters).

Optimization method: BFGS algorithm coupled with 
the unsteady CAA adjoint solver.

Global solution: Best initial setting for the gradient 
based local optimization in the second level.

Local Solution: Optimal spatial distrubution 
of the EHR model parameters.

Figure 1: Schematic illustration of the two-level approach

approach is illustrated schematically.
In the following, we first introduce the global optimization strategy used in the first level. Thereby, we

give a special emphasis on the surrogate model since the quality of it plays a key role in the success of the
global search. Then, we introduce the discrete adjoint methodology used to develop the discrete adjoint
CAA solver, which is used to evaluate the gradient vector in the gradient search in the second level.

3.1 Global Search Based on a Surrogate Model
Since CAA simulations, required to calculate the value of the objective function for a given liner design, are
computationally very expensive, we suggest to use a surrogate model. In the present work, the surrogate
model is constructed using the Kriging method, which is introduced briefly in following.

The Kriging method [20] (also called as the DACE stochastic process model [21]) is an interpolating
method, which features the function to be interpolated at all sample points. It provides a statistic prediction
of an unknown function by maximizing the likelihood of the estimate. The Kriging method can cope with
unevenly distributed data, and therefore it is well suited for the problems with highly-nonlinear response
surfaces having multiple extrema. For the derivation of Kriging, the output data obtained from ns different
deterministic computer simulations Yi = f(Xi), i = 1, . . . , ns is treated as a realization of a stochastic
process, which is defined as the sum of a global trend function and an error term

f̃(X,β) = g>(X)β + Z(X)

The key assumption made while deriving the Kriging estimator is that the error term Z(X) is a Gaussian
process. In the present work, we adopt the so-called ordinary Kriging approach, in which the trend function
is assumed to be constant, i.e., g>(X)β = β0. Note that, due to the Gaussian process assumption, the Kring
estimator interpolates the function f at the sample points with zero uncertainty, i.e., f̃(Xi, β0) = Yi, i =
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1, . . . , np. We tacitly assume that sample points are exact, i.e., the errors due to modeling and discretization
errors in the simulations are neglected. Furthermore, Z(X) is assumed to be a stationary random process
with a zero mean, positive variance and covariance. The correlation function between two arbitrary sample
points Xi and Xj is taken as the Gaussian exponential correlation function

R(Xi, Xj) = e−
∑n
k=1 θk|X

k
i −X

k
j |
γk
,

where n is the dimension of the input vector X. Xk
i and Xk

j denote the kth elements of the design vectors
Xi and Xj respectively. The parameters of the correlation function θk > 0 and 0 < γk < 2 for k = 1, . . . n
must be tuned to find the setting, which provides the maximum likelihood of the estimator. Note that as
the distance between two designs Xi and Xj grows, the correlation function tends to go to zero. In the other
extreme case, as the distance between Xi and Xj gets smaller, the correlation function tends to go one. As
given in [22], the Kriging estimator to predict the response a new design at X is

f̃(X,β0) = β0 + r>R−1[Ys − β0I], (3)

where the vectors Ys (functional values at sample points) and I are given by

Ys =


Y1
Y2
...
Ynp

 and I =


1
1
...
1

 .
The ns × ns matrix R, on the other hand, is called as the correlation matrix. It is given by

R =


R(X1, X1) R(X1, X2) . . . R(X1, Xns)
R(X2, X1) R(X2, X2) . . . R(X2, Xns)

...
...

...
...

R(Xns , X1) R(Xns , X2) . . . R(Xns , Xns)

 .
Note that all the diagonal elements of R are unity since R(Xi, Xi) = e0 = 1, ∀ i ∈ {1, . . . ns}. Furthermore,
R is symmetric since R(Xi, Xj) = R(Xj , Xi), ∀ i, j ∈ {1, . . . ns}.

The vector r in Eq. 3 is a measure of how a new sample at the input X correlates with the initial sample
points. It given as

r =


R(X0, X)
R(X1, X)

...
R(Xns , X)

 .
The trend function for the ordinary Kriging β0 can be found by taking the least square estimate. It is

given by
β0 = [I>R−1I]−1[I>R−1Ys].

A very useful feature of the Kriging method is that the theory provides the mean squared error, which
can be taken into account while choosing new sample points. The variance of the Kriging estimator at an
untried point X is given as

s2 = σ2

[
1− r>R−1r +

(r>R−1I − 1)2

I>R−1I

]
, (4)

where σ2 is the maximum likelihood estimate of the unadjusted variance

σ2 =
1

n
[Ys − β0I]>R−1[Ys − β0I].

Also note that the variance s2 is an indicator of uncertainty of the Kriging approximation at the new sample
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Figure 2: The Eggholder function f(x, y) = −(y + 47) sin(
√
|x/2 + y + 47|)− x sin(

√
|x− (y + 47)|)

point X. Higher values of it indicate that the response surface given by the Kriging estimator is likely to
deviate from the true response surface. In general, the quality of the Kriging estimator depends on three
factors:

• The selection of parameters of the correlation function θk and γk, k = 1, . . . n.

• The number of samples used to construct the Kriging estimator: ns.

• The sampling strategy used to choose the initial samples.

The most common approach used to select the parameters of the correlation function is to pick up the
values, which maximize a suitable likelihood function. Since we assume that the error term is a Gaussian
process, it is appropriate to use the Gaussian log-likelihood function

`(θ, γ) = −ns
2

(ln(2π) + 1))− ns
2
s2 − 1

2
ln(detR).

Therefore, the parameters of the correlation function are given from the solution of the optimization
problem

max
θ,γ

`(θ, γ), (5)

which can be solved efficiently by an EA based global search method.
The second issue, which plays an important role in the quality of the Kriging estimator, is the number

of samples used to construct the surrogate model. In Figure 2, the contour plot of the Eggholder function
is shown for 0 < x1 < 100 and 0 < x2 < 100. The Eggholder function is a classical function used to test
global optimization algorithms since it is highly non-linear with multiple extrema. In Figures 3 and 4, the
response surfaces obtained from the Kriging estimators using 50 and 100 random samples are shown. On the
right hand side of each figure, contours of s2 are also plotted showing the uncertainty of the surrogate model
in the sampling domain. One can easily see that, the surrogate model obtained from 50 samples has high
amount of uncertainty at some locations and is not capable of reproducing the minimum at the right top
corner. Obviously, using 100 samples solves this problem but at the expense of doubling the computational
time required for the sampling.
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Figure 3: Response surface obtained by the Kriging method using 50 random samples for the Eggholder
function

Figure 4: Response surface obtained by the Kriging method using 100 random samples for the Eggholder
function

Figure 5: Response surface obtained by the Kriging method using 100 samples (LHS) for the Eggholder
function 8



Another important point affecting the quality of the surrogate model is the distribution of samples used
to construct the estimator. In general, it is hard to decide the optimal sampling strategy without having
a priori knowledge on the problem. The easiest strategy is of course using uniform or random sampling.
For some problems, however, using Latin Hypercube Sampling (LHS) might be more advantegous. As an
example, in Figure 5, the response surface obtained from the Kriging estimator using 100 samples chosen
by the LHS method is shown. Compared to the results, obtained by 100 random sample points, it can be
observed that LHS method leads to better results and less uncertainty of the response surface.

Once the surrogate model based on Kriging method is constructed, an EA based algorithm is used to
search the global optimal using a set of box constraints imposed on the design parameters. The lower and
upper limits for the box constraints, which generally depend on the results obtained from the numerical
simulations, are specified by the user. If the number of samples obtained in the initial data acquision phase
is not adequate, the surrogate model may be inaccurate and the value provided by the global search may not
be the real global optimum. An efficient way to explore a more accurate response surface is the Expected
Improvement (EI) method, which has been proposed by Mockus et al. [23]. The key idea behind the EI
approach is to take into account both the predicted value given by the surrogate model and the uncertainty
of that predicted value while deciding the locations of the additional sample points. By evaluating a value of
expected improvement, the EI approach provides the most promising new samples that can be added to the
existing data. In this way, the surrogate model becomes more and more accurate as additional data points
are included. For the minimization of a scalar-valued function J , the improvement function is given by

I(X) = max(J∗ − J̃(X), 0),

where J∗ is the minimum of the initial data set and J̃(X) is the predicted value of the objective function by
the surrogate model for the given design point X. The Expected Improvement value at a design X is given
by

E(I(X)) = (J∗ − J̃(X))Φ

(
(J∗ − J̃(X))

s

)
+ sφ

(
(J∗ − J̃(X))

s

)
,

where Φ and φ are the normal cumulative distribution function (CDF) and the normal probability density
function (PDF) respectively. The variable s is the root mean square error of the surrogate model given by
the Kriging method and it represents the uncertainty at of the predicted objective function a design point X.
As an example, the EI distribution obtained from the Kriging estimator using 100 sample points is shown
in Figure 6.

We can summarize the most important steps in the first level as

• Step 1: CAA simulations are performed at the initial sample points.

• Step 2: Optimization problem given in (5) is solved by the EA to determine the parameters of the
correlation function, which maximizes the log-likelihood function.

• Step 3: New sample point, which has the maximum value of EI, is determined by the EA based on the
Kriging surrogate model.

• Step 4: New sample point is added to the existing data set and procedure is repeated from the Step 2
until a certain number of iterations is exceeded.

3.2 Gradient-Based Optimization Using Discrete Adjoint Approach
Since we use a high dimensional design space for the gradient search in the second level, the most appropriate
way to evaluate the gradient vector is to employ an adjoint CAA solver. In this way, we ensure that the
computational cost of the local optimization using the gradient search remains bounded irrespective of the
number of liner patches used in optimization. In the following, we shortly introduce the unsteady discrete
adjoint methodology used to develop the CAA adjoint solver used in the present work. For simplicity of
the derivation, we consider the minimization of a scalar objective function, which is a function of the state
vector over a time interval [0, T ]

J = J(Y (T )),
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Figure 6: The distribution of the Expected Improvement (EI) for the Eggholder example

where Y (T ) is the value of the state vector at the time t = T . Although the objective function depends
explicitly only on the final solution, it also depends on the design vector implicitly. The design vectorX ∈ Rn,
which in our case is the EHR model parameters ε, β,Rf ,mf and Tl in each liner patch, influences the state
solution during the forward-in-time integration of the CAA simulation via the liner boundary condition given
by the acoustic impedance model (Eq. 2). Assuming that we have discrete state solutions Y0, Y1, Y2, . . . , YN
in N time-steps over the time interval [0, T ], the true dependency between the objective function J and the
design vector X can be written as

J = J(YN ) such that Yk+1 = G(Yk, X), k = 0, 1, . . . , N − 1,

where G is a discrete mapping of the state vector into itself. In the CAA context, the discrete mapping G in
the above equation corresponds to the set of operations performed within a single time iteration of the LEE
solver and it includes all the intermediate Runge-Kutta stages of the temporal LDDRK scheme. In other
words, assuming that all other boundary conditions other than the acoustic impedance at the lined section
are fixed, the forward trajectory of the dynamical system imposed by the LEE equations is determined only
by the initial value of the state vector Y0 and the design vector X. In short, the optimization problem can
be written with the state constraint as

min
X

J(YN ) such that Yk+1 = G(Yk, X), k = 0, 1, . . . , N − 1.

For the gradient search optimization we require the total derivative of J with respect to X. If the
objective function J is differentiated with respect to the design parameter vector X, we get.

dJ

dX
=

dJ

dYN

dYN
dX

.

On the other hand differentiating the discrete mappings Yk+1 = G(Yk, X), k = 0, 1 . . . , N−1 with respect
to design X, we get the expressions
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Using the expression for the derivative dYN/dX from the above equation, the total derivative dJ/dX can
be reformulated as

dJ

dX
=

∂J

∂X
+

∂J

∂YN

∂G(YN−1, X)

∂X
+

∂J

∂YN

∂G(YN−1, X)

∂YN−1

∂G(YN−2, X)

∂X

+
∂J

∂YN

∂G(YN−1, X)

∂YN−1

∂G(YN−2, X)

∂YN−2

∂G(YN−3, X)

∂X
+ . . .

+
∂J

∂YN

∂G(YN−1, X)

∂YN−1

∂G(YN−2, X)

∂YN−2

∂G(YN−3, X)

∂YN−3
. . .

∂G(Y0, X)

∂X
. (6)

Multiplying the above expression with a weight vector (column vector) Ẋ ∈ Rn, we get the so-called
direct discrete sensitivity equation

dJ

dX
Ẋ =

∂J

∂X
Ẋ +

∂J

∂YN

∂G(YN−1, X)

∂X
Ẋ +

∂J

∂YN

∂G(YN−1, X)

∂YN−1

∂G(YN−2, X)

∂X
Ẋ

+
∂J

∂YN

∂G(YN−1, X)

∂YN−1

∂G(YN−2, X)

∂YN−2

∂G(YN−3, X)

∂X
Ẋ + . . .

+
∂J

∂YN

∂G(YN−1, X)

∂YN−1

∂G(YN−2, X)

∂YN−2

∂G(YN−3, X)

∂YN−3
. . .

∂G(Y0, X)

∂X
Ẋ,

which gives the directional derivative of J in the direction of Ẋ. The exact implementation of the above
equation can be realized by differentiating the complete simulation chain by the forward mode of AD. In CAA
context, this corresponds differentiating the complete CAA solver with the AD tool. This process generates
a "tangent-linear" CAA solver, which is an exact implementation of the operations given in above. Note
that using the tangent-linear solver only a single component of the gradient can be evaluated. Therefore, for
large n, evaluating the gradient vector with a tangent-linear solver is infeasible.
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On the other hand, if we take the transpose of the both sides in Eq. 6, we obtain

dJ

dX

>
=

∂J

∂X

>
+
∂G(YN−1, X)

∂X

>
∂J

∂YN

>
+
∂G(YN−2, X)

∂X

>
∂G(YN−1, X)

∂YN−1

>
∂J

∂YN

>

+
∂G(YN−3, X)

∂X

>
∂G(YN−2, X)

∂YN−2

>
∂G(YN−1, X)

∂YN−1

>
∂J

∂YN

>
+ ...

+
∂G(Y0, X)

∂X

>
...
∂G(YN−3, X)

∂YN−3

>
∂G(YN−2, X)

∂YN−2

>
∂G(YN−1, X)

∂YN−1

>
∂J

∂YN

>
.

The above equation can be rearranged as

dJ

dX

>
=

∂J

∂X

>
+

1∑
i=N

∂G(Yi−1, X)

∂X

>
φi, (7)

where the vectors φi, i = N,N − 1, . . . , 1 are given by the recursion

φN =
∂J

∂YN

>
and φi =

∂G(Yi, X)

∂Yi

>
φi+1, i = N − 1, N − 2, . . . , 1. (8)

In this way, we obtained the adjoint sensitivity equation that evaluates the gradient vector at one stroke.
Similar to a tangent-linear solver, the adjoint solver that exactly implements the solution procedure given in
Eqs. (7) and (8) can be generated automatically by applying AD techniques on the source code of the under-
lying CAA solver. In this way, all parts of the CAA solver such as spatial and temporal schemes, boundary
conditions etc. are differentiated exactly and the discrete adjoint CAA solver inherits all the features of the
underlying CAA solver. In the present work, the Algorithmic Differentiation process of the underlying CAA
solver has been accomplished by using the source transformation tool Tapenade [24].

Note that the computations in Eq. (8) require that the values of the state vector Y must be available
in reverse order. In other words, the values of state vector in the order YN , YN−1, . . . , Y0 must be available
during the adjoint computation. However, due to the iterative nature of the CAA solver, the state vector is
updated after every iteration during the forward-in-time integration of. As a result, the values of the state
vector are no more available for the adjoint computation. This problem can solved by saving these values in
each iteration, but this approach becomes unfeasible for large scale applications with many time iterations
as the memory requirements may quickly exceed the available memory. To reduce memory requirements,
checkpointing strategies are employed, in which the flow solutions are stored only at selective time iterations.
These values are then used to recompute the intermediate states that are not stored. In the present work, a
two-level checkpointing algorithm has been employed [25]. This approach generates a checkpointing schedule
such that both RAM and disk checkpoints are used in an optimal way to offer the best compromise between
run-time and memory requirements.

We can summarize the most important steps in the second level as

• Step 1: The high-dimensional design vector is initialized using the best design from the first level.

• Step 2: The gradient vector is evaluated by the CAA adjoint solver.

• Step 3: The vector of design parameters is updated according to BFGS method.

• Step 4: At the new design, a CAA simulation is performed to measure the improvement. If the stopping
criteria is not fulfilled, the procedure is repeated starting from the Step 2.

4 Liner Optimization for the Turbofan By-pass Duct Configuration
In order to show the applicability and efficiency of the two-level method, a design optimization study on
a generic by-pass duct of a turbofan engine with bifurcations is performed. The objective function used
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in the optimization study is the sound power, according to the definition of Morfey [26]. In Figure 7, the
by-pass duct geometry including bifurcations is shown. The surfaces, in which the sound power integration
is carried out are displayed in blue. For the present study, we integrate the sound power at the second
surface close to the outlet. The duct length is 1.84m. At the inlet, the inner diameter is 0.5m and the outer
diameter is 0.84m. At the outlet, the inner diameter is 0.64m and the outer diameter is 1.0m. The CAA
aspects of configuration are discussed by Schönwald et al [27] in detail. The by-pass duct configuration is
particularly suitable to test the suggested optimization approach since it features all the important aspects
of sound propagation in turbofan by-pass ducts as well as the interaction of sound waves with the hard walls
and the liner. The computational grid, which is used for CAA and adjoint computations, has a multi-block
structure realized by applying the Chimera (overset) technique. Therefore, the entire computational domain
has a nearly equidistant and locally orthogonal O-type grid that forms the host grid. For the bifurcations,
which is treated by the overset grid, body-fitted O-type grids are used. The computational grid consists of
approximately 106 grid points, distributed over 68 computational blocks. In Figure 8, the computational
grid is shown on the left. In the right, the overset grid (red) for the bifurcations is shown at the cut interface
between the overset grid and the host grid. The largest grid spacing is around 6.5 mm, which corresponds
to approximately 11.5 point per wave. For the forward-in-time integration, we take 3360 time iterations
with the CFL number is set to 0.5. The computations are carried out using 64 cores. As far as the acoustic
source is considered, two acoustic modes at f = 1700 Hz and f = 47000 Hz are excited. As the boundary
conditions, a non-reflecting modal acoustic source at the inlet and a non-reflective PML boundary at the
outlet are used. The mean flow quantities required in the CAA and adjoint computations are calculated
by RANS simulation using the commercial flow solver STARCCM+. Since an unstructured grid is used for
the flow simulation, the simulation results are interpolated from the CFD grid onto the structured CAA grid.

For the EA based global search in the first level, we use a parameterization with a single liner patch. As
a result, the liner parameters are not allowed to vary spatially at the lined section of duct at this stage of
the optimization. The lined wall sections at the inner and outer duct surfaces are shown in Figure 9. For
the initial data acquisition phase, which is required to construct the surrogate model, CAA simulations at
100 different design points are carried out. Using the Kriging surrogate model, which is constructed using
the initial data, a global optimization using the EA algorithm is performed. Totally, 20 additional samples,
which have the maximum expected improvement value in each iteration, are added into the data. In the
second level, the number of liner patches is increased to 80 with totally 400 design parameters. The liner
parameters are initialized using the best design from the first level. As the gradient search algorithm, BFGS
algorithm is employed. The gradient information, which is required by the BFGS update is evaluated using
the discrete adjoint CAA solver. In Figure 11, the sensitivity maps of different liner parameters calculated at
the beginning of the second level are shown. These adjoint sensitivities at each CV face are integrated by the
adjoint solver to evaluate the design sensitivities at each liner patch. As the stopping criteria, the descent
tolerance of the objective function in successive iterations is used. The optimization process is terminated
after performing 5 iterations after 5 adjoint and 5 function evaluations. In Table 1, the values of the objective
function achieved in each level of the optimization process are tabulated. The sound power without the liner
(hard wall case) is calculated to be 6.981 W. Among the 100 samples in the initial data acquisition phase,
the best liner design has the sound power 0.223 W, which means that 96 % reduction was already achieved
compared to the hard wall case. After the global optimization in the first level, the sound power was further
decreased to 0.130 W, which means that 41 % reduction compared to the best liner design in the initial
data set was achieved. Increasing the number of liner parameters in the second level brought another 26 %
reduction compared to the first level optimal solution. The sound power at this best design was calculated
to be 0.096 W. In Figures 12, the optimal distribution of the EHR model parameters achieved at the end of
second level are presented.
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Figure 7: The by-pass duct configuration with bifurcations and power integration surfaces

Figure 8: Computational grid used for the by-pass duct configuration used in the CAA and adjoint simula-
tions (left) and overset grid for the bifurcations shown at a cut interface (right)

Figure 9: Lined wall section for the single patch liner configuration at the inner duct surface (left) and at
the outer duct surface (right)
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Figure 10: Lined wall section for the configuration with 80 liner patches at the inner duct surface (left) and
at the outer duct surface (right)

Configuration Sound power (W) % Reduction

Hard wall case 6.981 -
Best design in the initial sampling 0.223 96
Optimal single patch liner (first level) 0.130 41
Optimal spatially variable liner with 80 patches (second level) 0.096 26

Table 1: Comparison of the sound power for the initial liner setting, global liner optimization with single
liner patch and two-level optimization using 80 liner patches at the second level.

5 Conclusions
In this paper, we presented a two-level optimization approach for the design optimization of acoustic liners.
The two-level method is realized by combining an EA based global optimization strategy with a gradient
search method using an unsteady discrete adjoint CAA solver. The global optimization in the fist level is
carried out using a surrogate model based on Kriging approach. The discrete adjoint solver, used in the
second level, was developed by applying Algorithmic Differentiation (AD) techniques to the source code of
the underlying CAA solver. The adjoint CAA solver retains the full functionality of the underlying CAA
solver. The efficiency of the suggested two-level method was then demonstrated by finding the optimal liner
distribution of a turbofan by-pass duct.
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Figure 11: Sensitivity maps of liner parameters at the beginning of gradient search in the second level. Top
left: dJ/d(e−ε). Top right: dJ/d(1/mf ). Middle left: dJ/d(Rf + β). Middle right: dJ/d(Rf − β). Bottom:
dJ/d(1/Tl).
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Figure 12: Optimal lined wall section for the configuration with 80 liner patches: Top left : Optimal
distribution of e−ε. Top right: Optimal distribution of 1/mf . Middle left: Optimal distribution of (Rf +β).
Middle right: Optimal distribution of (Rf − β). Bottom: Optimal distribution of 1/Tl.
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