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Abstract: We present a computational fluid dynamics framework for the efficient and accurate
simulation of multiphase flows. The compressible Navier-Stokes equations are solved with a
Discontinuous Galerkin Spectral Element Method (DG-SEM). The system of governing equations
is closed by the Helmholtz energy function, a highly accurate real multiparamter equation of state
(EOS). This EOS covers liquid, vapor, liquid-vapor and supercritical regions. Thermodynamic
equilibrium is assumed in the multiphase region and a dense gas approach is used to represent
both phases in the solver. The EOS is evaluated and stored in a table during a parallelized
preprocessing step, which we discuss in detail. A strategy for efficiently building the needed tables
during calculation and post-processing is presented. During phase-change, high gradients are
possible, which cannot be handled by the DG-SEM. To handle these, a 2nd order finite-volume
shock-capturing technique is used. 1D validation calculations are shown and also 2D and 3D
use-case calculations on up to 6.000 cores.

Keywords: high-order, compressible Navier-Stokes, highly accurate equation of state, effi-
cient table approach, FV shockcapturing, high-performance-computing, cavitation.

1 Introduction
During the last decades the perfect gas assumption was commonly used to close the compressible Navier-
Stokes equation. In recent years, the focus has been moving to more realistic equations of state (EOS),
because of the need to solve more complex problems like high-pressure injectors or rocket engines. In
these environments, also phase transition can occur, e.g., in cavitation or condensation. To resolve such
phenomena, for a pure fluid at least two phases have to be taken into account, namely vapor and liquid.
It is a common practice to resolve the phase interface by using a sharp or defuse interface tracking [16,
22, 9, 6]. But these use stiffened gas EOS and the effects of phase transition are modeled in a second step
and added at the interface position as source or jump terms. In this work however, to resolve such multi-
phase phenomena, a thermodynamic equilibrium assumption is considered in the multi-phase region of the
EOS, which uses the Helmholtz energy functions. This means that the fraction of each phase depends only
on density and temperature. This is also called the dense-gas approach with thermodynamic equilibrium.
Similar approaches are also used by others [10, 11]. To solve the compressible Navier-Stokes equation, a
Discontinuous Galerkin Spectral Element Method (DG-SEM) is used. The DG method was first introduced
by Reed and Hill [15] in 1973 and later extended to non-linear conservation laws [8] like compressible gas
dynamics. The first to solve the compressible Navier-Stokes equations with a DG method were Bassi and
Rebay [3] in 2002. The high parallel efficiency of the DG-SEM, one of the many variants of DG methods,
is shown in [1, 13]. The DG-SEM is limited to hexahedron elements but with curved faces, which allows
complex unstructured meshes for calculation. A high-order method like this has the problem that shock
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waves or strong gradients can lead to instabilities. The use of the highly accurate EOS leads also to high
gradients during cavitation or condensation. It is mandatory to equip the DG-SEM solver with some sort
of shock capturing. One option is to use explicit artificial viscosity. Persson and Peraire introduced this to
DG methods [14] in 2006 and added viscosity locally. A second approach to capture shocks in a DG solver is
hp-adaption. The DG cell is locally refined and a 2nd order finite volume method is used in the refined cells.
The order is reduced but the resolution is increased. Since it needs to be thermodynamically consistent,
the latter is used in this work. The complete solver is parallelized with MPI and performs very well on the
CRAY XC40 (Hazel Hen) of the High Performance Computing Center Stuttgart (HLRS).

This paper is ordered like the following. In the second section the governing equation and the numerics is
explained. Also Riemann solvers for real fluids and the shock-capturing technique are discussed. In the third
section the efficient coupling of the EOS and the CFD-Solver is carried out. A very efficient table approach
is used for this task. The fourth section contains 1D verification and 2D and 3D use-cases. The last section
concludes the work and gives an outlook for future work.

2 Numerics
In this section a short overview about the DG-SEM and also the compressible Navier-Stokes equation is
given. The used EOS is explained in more detail. Also some Riemann solvers for real fluid EOS are shown,
the coupling of the DG-SEM and FV method is described and the used explicit time integration is explained.
At the end of this section some information about the parallelization technique is given.

2.1 Navier-Stokes Equation
The compressible Navier-Stokes Equation can be written as

∂U

∂t
+∇x · ~F a(U)−∇x · ~F d(U,∇x U) = P, (1)

where U is the vector of conservative variables U = (ρ, ρ~v, ρE)T , where ρ is the density, ~v is the velocity vector
in all three space dimensions and E is the total energy. P ∈ R5 is the source term vector, ~F a = (F a1 , F

a
2 , F

a
3 )T

are the inviscid or advection fluxes and ~F d = (F d1 , F
d
2 , F

d
3 )T are the viscous or diffusion fluxes in three

dimensional space. For Newtonian fluids the vector of the advection fluxes is given by

F al (U) =


ρ vl

ρ v1vl + δ1l p
ρ v2vl + δ2l p
ρ v3vl + δ3l p
ρEvl + p vl

 , l = 1, 2, 3, (2)

and the viscous fluxes by

F dl (U, ~∇U) =


0
τ1l
τ2l
τ3l

τljvj − ql

 , l = 1, 2, 3. (3)

The viscous stress tensor is given as (with the viscosity µ)

τ := µ(∇x ~v + (∇x ~v)T − 2

3
(∇x · ~v)I), (4)

and ~q = (q1, q2, q3)T is the heat flux where λ is the heat conductivity and the flux is proportional to the
temperature gradient,

~q := −λ~∇T . (5)
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2.2 Discontinuous Galerkin Spectral Element Method
Now the Navier-Stokes equation is used to derive the DG-SEM in 3D,

∂U

∂t
+∇x · ~F a(U)−∇x · ~F d(U,∇xU) = 0,

∂U

∂t
+∇x · ~F (U,∇xU) = 0.

(6)

Equation (6) is written in physical space, every element is mapped to a reference element E ∈ [−1, 1]3

using the reference coordinates (ξ1, ξ2, ξ3)T . A polynomial mapping function ~x(~ξ) is used to map from the
reference element to the one in physical space. The Jacobian J(~ξ) = det(∂~x

∂~ξ
) is calculated from this mapping

function. Transforming eq. (6) into reference space yields

Ut +
1

J(~ξ)
∇ξ · ~F(U,∇xU) = Ut +

1

J(~ξ)
∇ξ · (~G(U)− ~H(U,∇xU)) = 0, (7)

where ∇ξ = (∂ξ1 ∂ξ2 ∂ξ3)T is the divergence operator in reference space. The flux is transformed in
~F(U,∇xU) and the contributions of inviscid and viscous to the flux are the terms ~G(U) and ~H(U,∇xU),
respectively. In each element the solution vector, depending on the governing equation, is approximated by
a tensor product of 1-D Lagrange polynomials `N of degree N ,

U(~ξ, t) ≈
N∑

i,j,k=0

Ûijk(t)ψNijk(~ξ) , ψNijk(~ξ) = `Ni (ξ1)`Nj (ξ2)`Nk (ξ3) . (8)

This is a nodal interpolation ansatz and Ûijk(t) are time dependent nodal degrees of freedom (DOF). `Ni (ξ)

stands for the standart Lagrange polynomial of degree N and is defined by a set of nodal points Ûijk(t)
which can be defined arbitrarily. In this case, following Hindenlang et al. [13], the N + 1 Gauss-Legendre
points are used as the interpolation node set. The same holds for the flux ~F

F l(~ξ) ≈
N∑

i,j,k=0

F̂ lijkψNijk(~ξ), l = 1, 2, 3 (9)

F̂ lijk = Gl(U)−Hl(U, ~∇xU) |~ξijk (10)

Multiplying eq. (7) by a test function φ(~ξ), which is from the same space as the polynomial interpolation
basis function, and integrating over the reference element E, the variational formulation in reference space
is obtained, ∫

E

(
JUt +∇ξ · ~F(U,∇xU)

)
φ(~ξ) d~ξ = 0. (11)

The differentiability requirement for the flux term can be moved to the test function by integration by parts.
Allowing the solution to be discontinuous across element interfaces, the weak formulation is achieved∫

E

JUtφd~ξ +

∮
∂E

(G∗n −H∗n)︸ ︷︷ ︸
F∗

n

φds−
∫
E

~F(U,∇xU) · ∇ξ φd~ξ = 0, (12)

where G∗n := G∗n(U+, U−) is the inviscid numerical flux function (see subsection 2.4 for more detail) normal
to the surface.The superscripts ± stands for the solution at the grid cell surface from the neighbor grid cell
and the local one, respectively.

To derive the viscous flux terms, the governing equations is rewritten with an additional variable ~S as
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an estimation to the solution gradients to a corresponding system of first order equations:

~S −∇xU = 0,

Ut +∇x · ~F (U, ~S) = 0.
(13)

Following the steps from above, the equation system leads to∫
E

J ~Sφ d~ξ +

∮
∂E

~U∗nφds−
∫
E

U · ∇ξφd~ξ = 0,

∫
E

JUtφd~ξ +

∮
∂E

(G∗n −H∗n)φds−
∫
E

~F(U, ~S) · ∇ξφd~ξ = 0.

(14)

Where ~U∗n is the numercial flux for the additional equation and H∗n = H∗n(U+, U−, ~S+, ~S−) stands for the
numerical flux function for the viscous terms. As introduced in [2], we choose

U∗n =
(
αvisc U

+ + (1− αvisc)U
−)~n, (15)

H∗n =
(
αviscHn(U+, ~S+) + (1− αvisc)Hn(U−, ~S−)

)
, (16)

~n is the surface normal pointing outwards. Only vectorial components of the solution U are rotated (like
velocity or impulse), scalars are not affected. αvisc is chosen to be 1

2 , this method is named BR1 (first method
of Bassi and Rebay [2]). In this work also the temperature gradient ∆T is calculated with the BR1 method
because it is needed for the heat flux (see subsection 2.1).

2.3 Equation of State
In this work CoolProp [4] is used to provide the highly realistic EOS. It uses the Helmholtz energy functions
which are described shortly in this subsection. The EOS can be written as following:

a(T, ρ)

RT
=
a0(T, ρ) + ar(T, ρ)

RT
= a0(τ, δ) + ar(τ, δ), (17)

where τ is the inverse reduced temperature Tr/T and the reduced density ρ/ρr is denoted by δ. The reduced
parameters are normally the critical states [4][19]. a0 represents the ideal gas part and ar the residual part.
The EOS is written as a function depending on the density and temperature of a fluid. The ideal gas part
can be written as

a0(T, ρ) = −1 + ln
ρT

ρ0T0
+

h00
RT
− s00
R

+
1

T

∫ T

T0

c0p(T )

R
dt−

∫ T

T0

c0p(T )

RT
dt. (18)

ρ0, T0, h
0
0 and s00 are reference state parameters. R is the specific gas constant and c0p is function at constant

pressure. The residual part contains two parts, a polynomial and an exponential,

ar(τ, δ) =

IPol∑
i=1

niτ
tiδdi +

IPol+IExp∑
i=IPol+1

niτ
tiδdi exp(−δpi). (19)

ni, ti, di and pi are coefficients which are determined by nonlinear fits of analytically or experimentally
gained thermodynamic properties. IPol are the number of polynomial terms and IExp of the exponential
ones, depending on the thermodynamic region and the fluid. Using eq. (17) all other state variables, like
pressure, speed of sound, etc., can be evaluated by analytic differentiation with respect to the density and
temperature.

For the Navier-Stokes equation density and internal energy e can be calculated from the conservative
variables: e = E − 0.5 ~v2. Since the Helmholtz energy formulation uses the density and temperature as
input the correlation between these quantities must be evaluated. An easy way to do this is to iterate the
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temperature to find the corresponding internal energy. The starting point is the given internal energy eg
and the density ρg:

f(T ) = eg − e(ρg, T ) = 0. (20)

The bisection method is used in this work to find the correct temperature. After the bisection algorithm,
the corresponding temperature is known and with ρg and T all other parameters can be calculated easily.
This procedure is very robust but numerically very time consuming. In section 3 an idea is explained, which
uses this method in a preprocessing step to build a high accurate table for the EOS, which can be later used
during the calculation and postprocessing.

2.4 Riemann Solvers
As seen in eq. (12), G∗n := G∗n(U+, U−) needs to be evaluated. G∗ is calculated with a Riemann solver.
On the cell surface, there are two distributions to the solution, U+ and U−, from the two conjunct cells
connected by the surface. The intermediate state is calculated by a Riemann solver. Basic and detailed
information for Riemann solvers can be found in [20] and the matrices needed for the Roe-Riemann solver
for realistic EOS can be found in [5]. The states U+ and U− are rotated to the surface coordinate system.
The corresponding numerical flux is back rotated to the physical space.

2.4.1 Local Lax Friedrich (LF)

This is one of the simplest Riemann solvers and approximates the rarefaction wave fan as a single rarefaction
wave with the maximum signal speed and neglects the contact discontinuity. The shock wave is resolved also
with the maximum signal speed. An estimate for the fasted wave speed is guessed as the following

s = MAX(|u−|, |u+|) + MAX(a−, a+). (21)

With this maximum wave speed the numerical flux for the local Lax-Friedrich Riemann solver can be com-
puted

G∗n = 0.5 · (F a−n + F a+n )− s · (U+
n − U−n ). (22)

2.4.2 Harten-Lax-van Leer-Contact (HLLC)

This Riemann solver can additionally resolve the contact discontinuity. For the wave speed two estimates
are needed

s− = MIN(u−, u− − a−, u− + a−, u+, u+ − a+, u+ + a+), (23)

s+ = MAX(u−, u− − a−, u− + a−, u+, u+ − a+, u+ + a+). (24)

Also an estimation to the wave speed for the contact discontinuity is needed:

s∗ =
p+ − p− + ρ−u−(s− − u−)− ρ+u+(s+ − u+)

ρ−(s− − u−)− ρ+(s+ − u+)
. (25)

With this the corresponding numerical flux can be calculated

G∗n =


F a− if 0 ≤ s−
F a−∗ if s− ≤ 0 ≤ s∗
F a+∗ if s∗ ≤ 0 ≤ s+
F a+ if 0 ≥ s+

(26)

where the fluxes in the star regions are given as

F a±∗ = F a± + s±(U±∗ − U±). (27)
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The solutions in the star regions can be calculated with

U±∗ = ρ±
(
s± − u±

s± − s∗

)


1
s∗
v±

w±

E±

ρ± + (s∗ − u±)
[
s∗ + p±

ρ±(s±−u±)

]

 . (28)

2.4.3 Roe

The Roe-Riemann solver is well known and is computing the numerical flux as follows

G∗n =
1

2
(F− + F+)− 1

2
|Λ|R∗L∗(U+ − U−), (29)

where Λ are the eigenvalues of the system

Λ =


u− a
u
v
w

u+ a

 . (30)

R∗ are the right eigenvectors

R∗(Ū) =


1 1 0 0 1

(u− a) u 0 0 (u+ a)
v v 1 0 v
w w 0 1

(H − ua) H − ρa2ep v w (H + ua)

 , (31)

and L∗ are the left eigenvectors

L∗(Ū) =


u+a
2a −

H−u2

ρa2ep
−1
2a −

u
ρa2ep

−v
ρa2ep

−w
ρa2ep

1
ρa2ep

H−u2

ρa2ep
u

ρa2ep
v

ρa2ep
w

ρa2ep
−1
ρa2ep

−v 0 1 0 0
−w 0 0 1 0

−u−a2a −
H−u2

ρa2ep
1
2a −

u
ρa2ep

−v
ρa2ep

−w
ρa2ep

1
ρa2ep

 . (32)

To calculate ep = ∂e(ρ,p)
∂p a finite difference approach is used in this work. The matrices for R∗ and L∗ can

be found in [5].

2.5 FV-Subcell Approach
As stated earlier a shock capturing technique is needed which can handle the high gradients during phase
change and ordinary shocks. In this work a finite volume (FV) sub-cell approach is used. The Persson
indicator [14] is used to switch between the two methods in a cell during each step. The number of DOF are
the same for both methods as seen in figure 1. A conservative projection is used to transform the solution
between DG to FV cell representation (and vice versa) if necessary. The derivation of the FV approach
starts with ∫

eijk

JUt dξ +

∫
eijk

∇ξ · ~F(U,∇ξU) dξ = 0 i, j, k = 0, . . . , N. (33)
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Figure 1: DOF distribution for a DG (left) and FV cell

Figure 2: Inner-cell and over-interface reconstruction

The reference element is split into (N + 1)3 equidistant FV cells where eijk donates one cell. Using again
the integration by parts rule the FV method is written as∫

eijk

JUt dξ +

∫
∂eijk

g∗n(U,∇ξU) dSξ = 0

where the nodal value Uijk are constant mean values of ijk-th FV sub-cell. g∗n is the numerical flux for each
FV element. The FV approach can be written in a discrete way as

Jijk(Uijk)t =
N + 1

2

[
−g∗,ξ

1

i− 1
2 ,j,k
− g∗,ξ

1

i+ 1
2 ,j,k

]
+
N + 1

2

[
−g∗,ξ

2

i,j− 1
2 ,k
− g∗,ξ

2

i,j+ 1
2 ,k

]
+
N + 1

2

[
−g∗,ξ

3

i,j,k− 1
2

− g∗,ξ
3

i,j,k+ 1
2

]
.

The subscript n for the g∗n was omitted here for the sake of simplicity. A second-order reconstruction is
used in this work, see figure 2. Also if a DG and FV cell are adjacent to each other the reconstruction is
done by projection of the face solution of the DG face to a FV distributed solution. The gradients for the
reconstruction are limited with the MinMod-Limiter which gives this approach the total variation diminishing
(TVD) property. For the viscous fluxes in the FV method the middle value of two neighboring gradients are
used. The gradients are constructed and limited in primitive variables Up = (ρ, u, v, w, T )T where T is the
temperature.

2.6 Time Integration
For time integration a low storage explicit Runge-Kutta 4th order (LSERK4) algorithm is used. In algorithm
1 K has the same dimension as the solution vector U . The constants ai and bi can be taken from table 1.
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K = 0;
for i← 1 to 5 do

K = aiK + ∆t Ut(U);
U = U + biK;

end
Algorithm 1: low storage Runge-Kutta 4th order algorithm

Table 1: Coefficients for the LSERK4 algorithm
i ai bi

1 0 1432997174477
9575080441755

2 − 567301805773
1357537059087

5161836677717
13612068292357

3 − 2404267990393
2016746695238

1720146321549
2090206949498

4 − 3550918686646
2091501179385

3134564353537
4481467310338

5 − 1275806237668
842570457699

2277821191437
14882151754819

The time step ∆t is calculated with the advection time step

∆tadv
min ∼

1

λadv
max

∆x

2N + 1
, (34)

where ∆x is the element length and λadv
max the maximum eigenvalue of the flux Jacobian matrix for advection.

Also the diffusion time step is needed

∆tdmin ∼
1

λdmax

(
∆x

2N + 1

)2

, (35)

where λdmax is the maximum eigenvalue of the diffusion matrix [7]. ∆t is the minimum out of these two time
steps.

2.7 Parallelization
The parallelization of the solver is done with MPI routines. It is designed to handle one DG element per
core at its limit. A communication-hiding technique is used and is explained in more detail in [1, 13]. For
this kind of FV shock capturing the memory layout did not change and the parallelization technique can be
easily adapted. The reconstruction for the 2nd order FV scheme is also done over MPI interfaces.

3 Efficient implementation of the Equation of State
To resolve effects like cavitation and condensation in a dense gas approach, a realistic EOS has to close
the Navier-Stokes equations. In this work the CoolProp 4.2.6 library [4] is used. For water, as example,
the IAPWS-IF95 [21] standard with thermodynamic equilibrium in the two-phase region is used, but with
CoolProp over 100 fluids can be evaluated. The easiest way to implement the EOS would be to directly couple
CoolProp with the DG solver during calculation. This involves also the temperature iteration explained in
subsection 2.3, which is not part of CoolProp. The library can handle density and internal energy as an
input, but in this work control of the iteration is needed.
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Table 2: Comparison of evaluation time (µs) perfect gas and realistic EOS
Vapor Two-Phase Liquid

Perfect Gas 0.01712 0.01712 0.01712
Realistic 232.015 2392.149 260.016
Table 0.32402 0.36802 0.30002

If the evaluation time between a perfect gas and realistic EOS is compared it is easy to see why a different
approach is needed. Table 2 shows the evaluation time for density and internal energy as input parameters.
Both types of EOS calculate, with these two inputs, the following output parameters: temperature, pressure,
speed of sound, viscosity and heat conductivity. The evaluation of the perfect gas EOS is several orders of
magnitude faster which means, by using the realistic EOS directly, the performance of the code will drop by
this factor. This is not usable in a CFD context. In the next subsections an approach is explained, which
reduces this factor extremely.

3.1 Table Approach
In this work a table approach is used to reduce the overhead of the realistic EOS evaluation. To build
such a table, which stores the information of the realistic EOS, the minimum and maximum values for the
input parameters define a two dimensional space. This area is divided into a 2l × 2l equidistant elements.
l stands for the level but normally the table build process starts at level 1. The boundaries for the table
are defining the computational domain T = [ρmin, ρmax] × [emin, emax]. Each element has the size t =[
∆lρ,∆le

]
=
[
ρmax−ρmin

2l
, emax−emin

2l

]
depending on the level. Also every element is mapped to the unit

element E = [0, 1]× [0, 1] with the coordinates ξ and η. For each cell a polynomial representation of the EOS
in the unit element is build

qph (ξ, η) =

p∑
i,j=0

q̂ijψij (ξ, η) , q̂ij = q(ξi, ηj). (36)

The root of each element is the corner with both minimum values. q̂ij is evaluated with the help of the EOS
library for the input values ρroot +ξi∆

lρ and eroot +ηj∆
le. The used nodal basis functions ψij(ξ, η) are build

with Chebyshev-Gauss nodes. The polynomial degree p can vary for each element. In this work pmax = 10
and the degree used by the element is the minimum polynomial degree which satisfies

L∞ = max

(
qh(ξ, η)− q(ξ, η)

q(ξ, η)

)
∞
< εt. (37)

The maximum norm error-criterion is checked on 20 × 20 equidistant points in each element. In case the
L∞-error of the polynomial approximation is not satisfied by an element this can be refined by dividing it
in 2 × 2 equidistant elements. This is repeated until the error is lower or the maximum level is reached.
L = 32 is the maximum level because the element localization, e.g., finding the root of an element, is done
with a 64-bit number. Figure 3 shows the 1st and 2nd level of a table with the corresponding identification
binary number N . This number is read from right to left. The first two digits correspond to level one. The
second pair of numbers belongs to the second level and so on. Algorithm 2 shows a way to calculate the
root values for each element by using the identification number N . Here le is the level of the element.

ρroot = ρmin;
eroot = emin;
for l← 1 to le do

ρroot = ρroot +N [2l − 1]∆lρ;
eroot = eroot +N [2l]∆le;

end
Algorithm 2: Finding the root for a identification number N
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Figure 3: Level 1 and 2 with identification number

N [x] denotes the bit at the x position. The return value is 0 or 1. A schematic of the quadtree is shown in
figure 4 with the connections to the previous levels. Figure 5 shows a table for water with ρmin = 1 kg/m3

and ρmax = 1330 kg/m3 defining the x-axis and emin = −9900 J and emax = 4.056 · 106 J is the range of the
y-axis. The building error was set to εt = 1 · 10−7 and L = 17 for this table. The quantity q for the error
calculation equals the temperature.

Because of the higher gradients at the liquid and vapor saturation line the algorithm has to refine there
to reach the desired error. Since this can lead to a very large number of elements, a cut-cell approach is
also implemented in the table algorithm. To find a cut-cell the saturation temperature is needed. This
can be found with a given density and the vapor quality χ for the liquid or vapor saturation line, where
χ = 0 and χ = 1, respectively. The density is given by the minimum and maximum values for one element.
Two points (p1 = (ρmin, χ) and p2 = (ρmin, χ)) are found in the table plane for each saturation line which
are connected by a linear line. This line is checked if it is cutting the element. Of course this is a linear
approximation to a curved line, but at higher levels the saturation line gets better approximated because
the elements are becoming small. In figure 6 the four possible cut-cell types are illustrated neglecting the
rotation. By cutting the element triangles are created. Inside this triangle a polynomial representation of
the EOS is build with the same degree as the element. Also for the triangular cut-cells the maximum error
is evaluated and if it holds condition 37 no more refinement is needed. If both kind of cells reach the needed
criterion the polynomial representation of the quadric cell is used.

To evaluate the table during computation, a fast quadtree integer-based bisection described in [12] is used
to find the corresponding element. In the element the polynomial basis (see eq. (36)) is evaluated to find
the needed quantity (e.g. temperature). The time to calculate the needed quantities temperature, pressure,
speed of sound, viscosity and heat conductivity from density and internal energy for the table approach can
be seen in table 2 compared to the perfect gas equation and the EOS library.

3.2 Parallelization
The building process of the table is fully parallelized. It can be build with any number of processors. The
root core is setting up the level by creating the unique identification number per element needed for the
level. The amount of numbers is divided by the number of cores. Each core knows the minimum and
maximum of the input variables (e.g. density and internal energy). The identification numbers and current
level are broadcast by the root core to every core. With these numbers each core can evaluate the polynomial
functions to approximate the EOS for each element it received from the root core. When all elements are
done the cores send the data back to the root. They send back following information: maximum error norm
for each element, polynomial representation for quadric and cut elements and if a refinement is necessary.
The root collects all this information and builds each level. If a new refinement level is needed it builds the
identification numbers for the new level and sends it evenly distributed to the used cores. If the number of
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Figure 4: Schematic quadtree with level connections

Figure 5: A table for water. x-axis(ρ)=[1, 1330] kg/m3 and y-axis(e)=[−9900, 4.056 · 106] J
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Figure 6: 4 possible cut-cells types

cores is higher than the number of elements some of the cores idle.

3.3 Table types
During calculation different table types are needed. The tables used during calculation in this work are listed
in table 3. The table shows the input variables and the output quantities. The used table dimensions are
stated in x and y direction. The used target error for the building process and the used numbers of cores
are also listed in the table. With these used parameters the corresponding building time and the area size
in percentage which could not be resolved can be found in the table information. Even with the highest
level some elements still do not satisfy the error criterion. Since the elements are getting smaller each level
the uncovered area is very small. In the ’purpose’-row C stands for the conservative variables and P for the
primitive ones. The arrow shows the conversion directions for which the table is used. One table is used for
both directions. For the C → P calculation first the ’(ρ, e) → T ’-table is evaluated and with the received

Table 3: Tabless for water used in this work
Input (ρ, e) ( 1

ρ
, e) (T, ρ) (T, p)

Output T T e, p, a, µ, λ ρ, e

x-value range [1, 1330] kg/m3 [1, 10000]m3/kg [276, 1273]K [276, 1273]K
y-value range [−9.9, 4056] kJ [−9.9, 4056] kJ [0.0001, 1330] kg/m3 [0.001, 10000]MPa
error εt 1× 10−7 1× 10−7 1× 10−7 1× 10−6

build time [min] 14 15 5 10
# cores 4800 4800 4800 1200
area not covered [%] 1.5× 10−2 3.0× 10−3 9.7× 10−5 1.2× 10−5

Purpose C → P C → P C ↔ P BC
size [GB] 0.32 1.4 3.9 2.2
L 17 19 22 23
Valid elements [%] 44 51 39 38

temperature the ’(T, ρ) → (e, p, a, µ, λ)’-table calculates the primitive quantities. In the other direction the
density and temperature are the primitive inputs and the internal energy is an output. The purpose ’BC’
means boundary condition and this table is used for the isothermal wall condition. The size specifies the
needed space on a hard disk. Keep in mind that all the calculated elements are stored regardless of the error.
The percentage of valid elements shows the amount of elements which satisfy the error criteria. This means
that the needed amount of memory during calculation is lower. For post-processing a table can be used
with a lower error and more quantities which are not needed during calculation. The lower error reduces the
needed disk space drastically. See table 4 for more information.

4 Results
In this chapter the calculation results are shown. At first the high-order convergence for pure DG calculation
and the one for mixed DG and FV calculations are shown. 1D and 3D convergence is presented. For validation
1D caluclations are taken from [10, 17]. Some Riemann problems and 1D cavitation as well as condensation
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Table 4: Tabels for water used in this work
Input (T, ρ)
Output e, p, a, µ, λ, s, q
x-value range [0.0001, 1330] kg/m3

y-value range [274, 1273]K
error 1× 10−3

build time [min] 10
# cores 48
area not covered [%] 0.19
Purpose Post-processing
size [GB] 0.2
L 14
Valid Cells [%] 51

is shown. For the use-case simulation a NACA 0012 in water is calculated in 2D. For scaling tests a 3D
channel flow with cavitation is shown. All variables values are given in SI units.

4.1 Convergence
For convergence investigation a manufactured solution is used in 1D and 3D. All convergence tests are done
with periodic boundary condition and the perfect gas EOS for validation purpose. The advection convergence
is achieved by setting the viscosity µ = 0. For the diffusion a value for µ is chosen so that the viscous terms
dominate.

4.1.1 1D

A sine wave is transported from left to right in the 1D simulation where the length of the mesh is 2 m. Three
different setups are shown. The first is a pure DG mesh (table 5). The convergence for the high-oder scheme
is achieved and also the one for the 2nd order FV scheme as well as for the mixed method. Only the density
is shown but all other variables converge, too.

Table 5: L2 errors and convergence rates of the density for 1D advected sinus wave for pure DG sub-cells
method with a polynomial degree of the DG elements ranging from N = 3 and N = 5.

advection diffusion
poly. degree cells error order error order theor. order

N=3

24 8.17e-08 7.77e-08

4
48 4.80e-09 4.09 5.23e-09 3.89
96 2.99e-10 4.01 2.89e-10 4.18
192 1.87e-11 4.00 1.81e-11 4.00
384 1.19e-12 3.98 1.47e-12 3.63

N=5

24 1.15e-11 1.23e-11

6
48 1.79e-13 6.01 1.75e-13 6.13
96 9.45e-14 **** 1.18e-13 ****
192 1.80e-13 **** 8.42e-14 ****
384 3.55e-13 **** 2.24e-13 ****

To check the convergence for the FV scheme all elements are forced to be represented as FV sub-cells.
As seen in table 6 a order of up to 1.69 is reached. The second order cannot be achieved because a MinMod
limiter is used. This decrease of the theoretical oder is well known for a reconstruction with TVD limiter.
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Table 6: L2 errors and convergence rates of the density for 1D advected sinus wave for pure FV sub-cells
method with a polynomial degree of the DG elements ranging from N = 3 and N = 5.

advection diffusion
poly. degree cells error order error order theor. order

N=3

24 1.65e-03 3.61e-05

2
48 5.14e-04 1.68 1.20e-05 1.58
96 1.60e-04 1.69 3.99e-06 1.59
192 5.00e-05 1.67 1.31e-06 1.60
384 1.57e-05 1.67 4.30e-07 1.61

N=5

24 8.37e-04 1.91e-05

2
48 2.59e-04 1.69 6.31e-06 1.60
96 8.09e-05 1.68 2.08e-06 1.60
192 2.54e-05 1.67 6.84e-07 1.61
384 8.00e-06 1.67 2.23e-07 1.62

Table 7: L2 errors and convergence rates of the density for 1D advected sinus wave for mixed DG and FV
sub-cells method with a polynomial degree of the DG elements ranging from N = 3 and N = 5.

advection diffusion
poly. degree cells error order error order theor. order

N=3

24 1.26e-03 3.46e-05

2
48 4.45e-04 1.50 1.04e-05 1.74
69 1.27e-04 1.81 2.88e-06 1.85
192 3.61e-05 1.81 7.33e-07 1.97
384 1.11e-05 1.71 1.85e-07 1.98

N=5

24 7.43e-04 1.73e-05

2
48 2.26e-04 1.72 4.94e-06 1.81
96 5.98e-05 1.92 1.30e-06 1.92
192 1.82e-05 1.72 3.29e-07 1.98
384 5.47e-06 1.73 8.40e-08 1.97

For the third test in 1D a mixed mesh is used. This means that every other element is FV and the
rest DG. By comparing the order of convergence for advection and diffusion we see the influence of the
gradients for the viscous flux calculation (see subsection 2.5). The second order can be reached because of
the combination of the DG method and central evaluated gradients. The advection part still reaches around
1.7 because of the TVD MinMod limiter, see table 7.

4.1.2 3D

For the 3D convergence test a diagonal moving sine wave in a cubic mesh with an edge length of 2 m is
used. For the mixed element type a 3D check-board pattern is used. The reason why the convergence rate is
not as good as in 1D is the lower resolution. With the 483 elements and a polynomial degree of N = 3 this
makes a total of 7 Mio DOF. Doubling each direction would lead to 60 Mio DOF which would have been
too costly to calculate. We can see that convergence rate converges to a reasonable value in table 8.
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Table 8: L2 errors and convergence rates of the density for 3D sinus wave for DG and FV sub-cells method
with a polynomial degree N = 3 of the DG elements.

advection diffusion
poly. degree cells error order error order theor. order

DG
123 2.28e-06 2.18e-06

4243 1.41e-07 4.02 1.43e-07 3.93
483 8.88e-09 3.99 9.90e-09 3.86

FV
123 1.46e-03 2.50e-04

2243 5.20e-04 1.49 7.62e-05 1.71
483 1.59e-04 1.70 2.20e-05 1.79

MIX
123 1.85e-03 2.06e-04

2243 6.99e-04 1.40 6.46e-05 1.67
483 2.38e-04 1.56 1.94e-05 1.74

4.2 1D Validations
For further validation purpose a couple of 1D calculations are discussed in this section. In [10] five Riemann-
Problems for water are described. All of them work with this implementation, but only RP-W1, RP-W3
and RP-W5 are shown. Two additional calculations are performed which produces cavitation by rarefaction
and a condensation test-case taken from [17].

4.2.1 Riemann Problems

All Riemann-Problem calculations are performed on a 50 element DG mesh with a degree 3 polynomial. This
leads to 200 DOF. The local Lax-Friedrichs Riemann solver is used in the paragraphs RP-W1 to RP-W5.
The exact solution is indicated by the red color and taken from [10]. For all Riemann problems the FV
sub-cell approach is active. The indicator is set to be very sensitive that some elements are calculated with
the FV method.

RP-W1 The given states are Upleft = (985.9853, 6.4656, 2750736, 329.9096) and
Upright = (983.7899, 2.44908, 1091213, 332.8354) in primitive variables Up = (ρ, u, p, T ). The initial location
of the discontinuity is xi = 0.5. Both states are in the liquid region. The calculation is performed to an end
time of t=2×10−4s. In figure 7 the numerical and exact solution are compared. The agreement is very good
for the used local Lax-Friedrich Riemann solver. But of course the intermediate contact is smeared by this
kind of Riemann solver.

RP-W3 The given states are Upleft = (976.0968,−187.4091, 13279.97, 324.6175) and

Upright = (971.2215,−208.485, 40776.45, 349.4697)

again in primitive variables. The initial location of the discontinuity is xi = 0.5. Both pressures are the
vapor pressures for the given temperature. This means the initial states lie at the liquid-vapor zone but the
intermediate states are in the liquid area. This test has high pressure jumps and also phase change occur.
In figure 8 the numerical and exact solutions are compared. The agreement is very good. Some oscillations
occur for the pressure. This is because of the use of a highly accurate real fluid EOS and is also seen in [10].

RP-W5 The given states are Upleft = (998.23739, 100.0, 100000.0, 293.0) and

Upright = (996.55634, 100.0, 100000.0, 300.0)

again in primitive variables. The initial location of the discontinuity is xi = −0.5. It demonstrates a isolated
moving contact discontinuity. As mentioned in [18] the use of highly non-linear EOS can produce oscillation
in pressure and velocity for moving contact discontinuities. As seen in figure 9 this is also the case here. The
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Figure 7: Riemann Problem RP-W1 at t=2 × 10−4s: comparison of the exact solution (red) with the
numerical solution (blue)
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Figure 8: Riemann Problem RP-W3 at t=3 × 10−4s: comparison of the exact solution (red) with the
numerical solution (blue)
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Figure 9: Riemann Problem RP-W5 at t = 1 × 10−2s: comparison of the exact solution (red) with the
numerical solution (blue)

oscillations are more noticeable at the location of the discontinuity but almost not visible for the velocity.
For the pressure they are around 1 per mill of the initialized data.

Different Riemann solvers If the LF, HLLC and Roe are compared we see the usual behavior. For
the RP-W1 test case we see in figure 10 that the intermediate contact discontinuity is much better resolved
with the HLLC and Roe Riemann solver. The Roe Riemann solver tends slightly more to oscillation but
this vanishes when the resolution is increased by a factor of 4. This can be seen in figure 11. Also in this
figure it is very well visible that all three Riemann solvers approximate the exact solution much better at
a higher resolution. It has to be mentioned that for the RP-W3 the Roe Riemann solver is not producing
stable results for a reasonable resolution.

4.2.2 Cavitation

The given states are Upleft = (997.0854,−10, 100000, 298) and Upright = (997.0854, 10, 100000, 298) again in
primitive variables. Here 2500 Elements and a polynomial degree of 3 is used. The initial position of the
discontinuity is xi = 0 for this test case. As seen in figure 12 due to the opposite velocity directions a
cavitation area is produced. The sound speed drops by several orders of magnitude which is normal for
multiphase problems and must be captured with the FV sub-cell approach. The results are in excellent
agreement with the ones presented in [10].

4.2.3 Condensation

The given states are Upleft = (1200, 0, 766266513, 300) and Upright = (500, 0, 3536.81, 300) again in primitive
variables. The left state is filled with liquid and the right with liquid-vapor mixture with a vapor volume
fraction of 0.5. The test case is taken from [17] but with a slightly adjustment to xi because of the different
sound speed velocities due to different EOS used in both methods. In this case xi = 0.64. With this a very
good result is reached compared to the original one. Figure 13 shows the obtained result.
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Figure 10: RP-W1 with LF (blue), HLLC (brown) and Roe (black) Riemann solvers. Exact solution is
colored red. Here 50 elements were used with N = 3.
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Figure 11: RP-W1 with LF (blue), HLLC (brown) and Roe (black) Riemann solvers. Exact solution is
colored red. Here 200 elements were used with N = 3.
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Figure 12: 1D Cavitation at t=5× 10−4s
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Figure 13: Condensation over time. 75 (blue), 150 (red), 225 (brown) and 300 µs (black)
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Figure 14: Hydro-Foil Naca-0012 with T = 300K, p = 5 bar, σ = 1, α = 8◦ at t = 0.03423 s. The white area
highlights where the FV method is active.

4.3 2D Calculations: Hydro-Foil
For a 2D test case a Naca-0012 is used as a hydro-foil. It is surrounded by water at a temperature of 300K
and a pressure of 5 bar. The angle of attack is α = 8◦ and the cavitation number σ = 1. A grid with 12194
elements is used with a polynomial degree of 4. This leads to ca. 1.5 Mio DOF. The simulation runs on 240
Cores. The chord length is 0.1334 m and the domain has a radius of one meter. This simulation is a show
case to demonstrate the capability of the code to run such simulations with DG and FV coupling. Figure 14
shows the cavitation region which develops from the tip of the foil. The white area shows the elements which
are using the FV method. all the rest of the computational domain uses the DG-SEM at this particular time
frame. Since the Persson indicator is used to switch between these methods it changes for every timestep.
But this calculation shows that the setup is well suited for resolving cavitational flows. In the near future
the calculations will be compared to experimental data to verify the implementation.

4.3.1 3D Calculation: Scaling

To show the scaling of the code a 3D calculation is performed. A throttle is filled with liquid water at 100 bar
and 330K and the inlet pressure is higher than the outlet pressure. Due to this pressure gradient the water
streams through the throttle and starts to cavitate. The inlet is pressurized with 300 bar and a temperature
of 330K. The outlet has a pressure of 100 bar and the same temperature as the inlet. The mesh for this
calculation can be seen in figure 15. The mesh has a total of 46592 elements and the polynomial degree is set
to three. For the scaling test a operating point is used where it cavitates in the throttle, which can be seen
in figure 16. This was done to assure that the tabled EOS is evaluated in the liquid-vapor region because
there is the highest refinement level. Also the coupling of the DG and FV scheme is active. Keep in mind,
that this calculation is only for scaling. All boundary conditions, except the inlet and outlet, are walls. The
scaling test is done on the CRAY XC40 (Hazel Hen) of the High Performance Computing Center Stuttgart
(HLRS). The amount of cores ranges from 24 up to 6144. Each test the number of cores are doubled. As
comparison of the needed simulation time the 24 core run is used as base to calculate the speed up. The
scaling can be seen in figure 17. The minimum load per core are 7 elements which leads to 448 DOF per
core at a core number of 6144. The lowest scaling compared to the 24 core run is still at 70 %. The decrease
of the ideal speed-up is due to a load-imbalance between the cores. There are several reasons for this: the
number of elements can not be divided evenly by the number of cores. Also the FV sub-cells are more
computation-time consuming than the DG elements by a factor of around 1.5. The table approach also adds
an imbalance because the time to evaluate the quantities depends on the level and polynomial degree of the
evaluated table element. Also an element which has a boundary condition face needs slightly more time than
a element without it. For an even better scaling a load-balancing algorithm has to be implemented.
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Figure 15: Mesh for the throttle flow with 46592 elements

Figure 16: Cavitation inside the throttle. Pitch black area shows the throttle wall. The gray-scale represents
the vapor mass fraction for this slightly cavitating flow
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Figure 17: Scaling with N = 3 from 24 to 6144 cores

5 Conclusion and Future Work
We presented a DG-SEM solving the compressible Navier-Stokes equations with a highly realistic EOS (e.g.
IAPWS-IF95 standard for water) on unstructured curved hexahedra elements. The EOS covers the vapor,
liquid-vapor, liquid and super critical regions. Inside the two-phase region thermodynamic equilibrium is
assumed. For modeling the two phases a dense gas approach is used. The EOS is provided by the CoolProp
library which can handle more than 100 fluids and we showed an efficient way to table this data to use
it during CFD calculation on more than 6000 cores. The need to table the EOS was also shown because
using the library directly during computation is too time consuming. The table approximates the EOS to
a certain L∞ error by using a quadtree approach with polynomial data representation and cut-cells for the
saturation lines. Since real fluid effects like cavitation lead to high gradients in the conservative variables a
shock capturing is implemented. During runtime the DG approximation of the solution can be replaced with
a 2nd order finite volume scheme by refining the DG element into (N+1)3 FV elements. We showed that the
Perrson indicator is well suited for 1D shock-tube calculation with phase change and for multi-dimensional
calculations with cavitation. The DG-SEM is known for its excellent parallel efficiency and we showed that
it still has a good scaling even with all these extensions.

Future work will concern the validation with 3D experimental data for fluid flows with cavitation. The
code will be optimized to reduce the overhead of the table approach even more. To improve the scaling
a load-balancing algorithm will be implemented to handle the load imbalances between the DG and FV
method.
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