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Abstract: Several devices and manmade structures interact dynamically with fluids 
such as water and air, behaving essentially as flexible elastic systems with large 
deformations and undergoing complex dynamics. The design and analysis of the 
configurations that these devices may acquire under different flow conditions can 
be carried out using numerical modeling tools. This paper presents the 
implementation of a Discrete Element Method (DEM) coupled with a Finite 
Volume Method (FVM) to represent the bi-directional dynamic interaction of 
flexible elastic systems with fluids, and its application to fishnets.   
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1     Introduction 
 
The dynamic of fishing nets is a matter of high complexity, the fundamental reason being that the 
forces acting on these devices depend on their shape, and at the same time, due to the elastic nature of 
the materials that shape it, the form it adopts is strongly influenced by its interaction with the 
hydrodynamic flow and other forces. Being able to design and define the shapes that various types of 
fishing gear might acquire under different flow conditions, represents an important challenge in terms 
of energy, trading and sustainability. Improvements are needed in design configurations in order to 
achieve greater efficiency in fishing, allowing better gear selectivity and reducing also the 
hydrodynamic resistance to reduce fuel consumption [3].  
 
There are many researches aimed at making changes in the construction of fish nets that help to 
improve the selectivity. Selectivity is the ability of the net to retain a target species and within it, 
individuals whose sizes are above the average size that define the maturity of the specimen. This 
ensures that young specimens can escape the device and continue to maintain the sustainability of the 
resource. And also ensures an improvement in the efficiency of the net from an economic standpoint 
and especially in environmental terms.  
 
The design and setup of fishing nets can be aided by numerical simulations of their interaction during 
trawling with water and free bodies dragged by the stream, with the aim of predicting the shape 
adopted by the fishnet and the forces exerted onto it. The Discrete Element Method (DEM) is well 
suited to represent elastic structures such as fishnets, while the Finite Volume Method (FVM) is 
widely used to simulate fluid flow. In this work we present a coupled model where a simple DEM 
method is implemented to represent the dynamics of the fishnet, while the fluid flow is solved using 
caffa3d.MBRi [6, 7], an open source fully implicit finite volume method for the 3D incompressible 
Navier-Stokes equations in complex geometry. Validation of the flow solver as well as mesh and time 
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independence studies can be found in the given references.  
 
This implementation is applied to represent the shape and stresses of a Fish Net Tunnel in interaction 
with an axial stream of water and free bodies dragged by the stream. The results are then compared 
and validated with a Fish Net Tunnel trawled in a hydraulic channel. The long term objective of the 
study is to develop a comprehensive model to simulate flexible bodies or elastic systems in interaction 
with fluids as a complementary tool to tank or wind tunnel testing. 
 
2     Problem Statement 
 
Several studies to numerically predict the configurations 
and loading acting on a fish net have been performed. 
Takagi et al. [2, 3], Shimizu et al. [4] and Lee et al. [5] 
modeled the fish net as lumped masses that are 
interconnected by springs without mass, and estimate 
the shape by calculating the displacements of these 
point masses under boundary and flow conditions 
assuming that moment is not transmitted between a 
mesh knot and a bar. They also provide model 
parameters such as drag and added mass coefficients 
and the spring rate of the interconnections. Figure 1 
shows a scheme of the knots and bars modeling, both 
elements are represented as point masses with different 
parameters, resumed in Table 1. 
 
 

 KNOTS BARS 
  τ η υ 

CD 1 0.1 1.2 1.2 
CM 0.5 0.0 1.0 1.0 

Table 1 – Hydrodynamic coefficients of bars and knots 

 
 
 
In this work we use the DEM to model the fishnet setting the point masses that shapes the net at each 
knot and at the center of the mesh bar. For the example fishnet considered in this work, the point 
masses are disposed in 50 concentric circles perpendicular to the flow direction, each circle is made of 
31 masses evenly distributed within a step of 360/31 degrees. The circles are offset from each other 
2cm in the direction of the flow and between two adjacent ones there is a phase shift of half step, the 
last circle is tied to close the tunnel and so the shape of the net in the initial condition is a cone, as 
shown in Figure 2 (upper panel). Every bar has a length of 2 cm, the diameter of the tunnel entrance is 
D = 20 cm and the mesh angle is 30º. The load is represented by thirty spheres that are also modeled 
as punctual masses with the same hydrodynamic parameters than the knots, in the initial condition 
these spheres are located regularly at the net entrance, as shown in Figure 2.  
 
The elements of the system are subject to internal forces, these are derived from the elasticity of the 
mesh bars and the location of the knots, and external forces due to weight, buoyancy, drag and the 
load acting on each element of the system. Each knot point is assumed to be a spherical point, so the 
fluid force coefficient is equal in every direction of motion. The differential equation (1) represent the 
equation of motion of knot point 𝑖, where 𝑎! is the acceleration vector at point 𝑖, 𝑀! the knot mass, 𝜌 

Figure 1 – Scheme of the point masses and 
massless strings 
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the fluid density, 𝑉𝑜𝑙! the volume of knot 𝑖, 𝐶!" the added mass coefficient, the vectors 𝑇! , 𝑊! , 𝐵! ,
𝐷! and 𝐹!  are the tension, weight, buoyancy, drag force and interaction with fishing load force 
respectively. 

𝑎! · 𝑀! + 𝜌 · 𝑉𝑜𝑙! · 𝐶!" = 𝑇! +𝑊! + 𝐵! + 𝐷! + 𝐹! (	1	) 

On the other hand, the mesh bars are modeled as cylindrical elements and the fluid forces vary with 
different directions of relative fluid velocity, thus it is needed to transform the forces applied to each 
bar into the local system of the corresponding bar, add them and then transform again to the reference 
system (Figure 1 shows both coordinate systems). Equation (2) represent the equation of motion of 
the bar 𝑖 where 𝑻𝑴𝒊 is the transformation matrix between the reference coordinate system and the bar 
𝑖 fixed coordinates, and the supra index ′ represents that the vector is in the local, body-fixed 
coordinates. Note that the Drag forces are calculated in the local coordinates.  

𝑎′! · 𝑀! + 𝜌 · 𝑉𝑜𝑙! · 𝐶!" = 𝑇! · 𝑻𝑴𝒊 +𝑊! · 𝑻𝑴𝒊 + 𝐵! · 𝑻𝑴𝒊 + 𝐷′! · 𝑻𝑴𝒊 + 𝑭! (	2	) 

𝑎! = 𝑻𝑴𝒊 · 𝑎′!! (	3	) 

These equations have the position and velocity of each knot point and mesh bar implicit in the tension 
and drag force, so the displacement of the device is given by a system of ordinary differential 
equations. The equations can be solved numerically for each point, given an initial position of the net. 
Shimizu et al. [4] introduces a Fishing Net Shape Simulator (NaLA) that incorporates the sixth order 
Runge-Kutta method for solving the ordinary differential equation system to simulate a bottom gill 
net. We found that the fourth order Runge-Kutta method [1] gives the best performance to solve the 
ordinary differential equations system, in our case. Equations (4 – 7) summarize the method where 𝜙 
is the vector with the velocity and position of every element of the system and 𝑓 is the vector 
containing the acceleration and velocity calculated with 𝜙 and the corresponding time. 
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The domain of this simulation is covered by one prism block of 4 meter in the direction of the fluid (x 
direction) and 70 cm in y and z directions, the entrance circle of the net is set and fixed at x = 1 m and 
centered in y and z. The discretization grid for the flow solver is made by cubic cells of 1 cm length 
(400x70x70).  The west boundary of the domain has inlet boundary condition where a uniform flow 
U=1 m/s in the x direction enters to the domain, without turbulence modeling. The east boundary is 
the outlet, and the rest of the boundaries, north, south, top and bottom are non-slip walls. In these 
conditions a time step of 0.01 second is enough to solve the flow, but not enough to solve the Fishnet 
with the Runge-Kutta solver. So, for every time step of the fluid solver the Runge-Kutta is executed 
100 times to reach the convergence of the system.  
 
To obtain the external forces acting on the fishnet, the fluid flow properties at each time step and the 
location of each element of the fishnet are required in order to compute the drag forces. The velocity 
is obtained by a search and interpolation routine that interrogates the finite volume grid for each 
lumped mass location. The drag forces are then calculated and applied to both the fishnet and the 
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fluid. The forces on the fishnet are incorporated at each lumped mass, while the force applied to the 
fluid is first filtered with a Gaussian distribution back into the finite volume grid in the fluid cells 
nearby each element of the fishnet and then added in the source term. This procedure is iterated within 
each time step until a specified convergence criteria. 
 
3     Results

A physical water channel test was carried out to compare the simulated with an experimental case. 
Figure 2 shows the configuration adopted by the net at four different time steps during the simulation 
and the comparison with a channel test in the same conditions. In the upper panel of Figure 2 the 
initial configuration of the net has the conic shape described in the previous section and the load is 
disposed at the entrance of the net represented as a set of free balls. As time advances, the load starts 
to be dragged by the flow and interacts with itself and the net. Subject to the drag of the fluid and the 
interactions with the load, the net adopts a bulb shape at the downstream end and a constriction in the 
middle. The form adopted by the fishnet in the numerical simulation compares qualitatively well with 
the one observed at the water channel test in Fig 2 (bottom panel). 
 
The simulation model represents the motion of the elements by hydrodynamic interaction with the 
fluid. This interaction is bidirectional, this mean that the flow affects the system elements and vice 
versa.  To this end, once calculated the force on the element an equal and opposite force is applied on 
the fluid, previously filtered with a Gaussian distribution, in the neighboring cells where the item is 
located. In Figure 3 the velocity profile is plotted at three different places. Each graph contains two 
plots, the blue dashed line is the profile that the flow may acquire in an equal domain but without 
fishnet, the red line is the profile of the simulation including the effect of the net onto the fluid. Both 
profiles are equal in the section except in the area of the bulb, where a slight velocity deficit can be 
seen in the area of the bulb. It can be observed that the numerical model represents little blocking of 
the flow by the fishnet load. This excessive traversal flow through the volume occupied by the spheres 
might be due to the modeling of the load as point masses and the way the forces are transmitted to the 
flow. We seek to further improve this representation in future related work, representing the freely 
moving spheres by an immersed boundary condition method over a fine enough mesh.  
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Figure 2: Fishnet shape adopted at 4 time steps of the computational simulation, t = 0, 1, 2 and 4 
seconds and comparison with a water channel test (bottom). 
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Figure 3 – Velocity profile at three different positions, A – Before the net, B – At the bulb and C – 
After the net, and its comparison with a simulation without the FishNet. 
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Another indication of the qualitatively sound behavior of the model is given by the strain of each bar. 
As the net is modeled with revolution symmetry the stretching of the bars contained at a same y-z 
plane should be similar in the planes away from the bulb and more dispersed in the bulb area, and the 
mean value by section must be a monotone decreasing curve within the x direction. This effect can be 
seen in Figure 4, the strain of each bar is represented by the black dots and the red line is the mean by 
section. At the end of the net there are several bars that are not stretched and so the value of the strain 
is negative.  
 

 
The mesh angle α (shown in Figure 1) is a very important design property; the selectivity of the fish 
net depends on this, a much closed mesh wouldn’t allow baby fishes to scape and preserve the 
species. In Figure 5 the black dots indicate the mesh angle α and the red line the mean by section 
within the x direction.  
 

Figure 5 – Mesh angle α (black dots) and mean by section (red line) 

Figure 4 – Bar strain (black dots) and mean by section (red line) 
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4     Conclusions and Future Work 
 
The preliminary results show that the coupled method for solving the interaction between the fishnet, 
free bodies and water performs qualitatively well, obtaining a similar shape of the Fish Net Tunnel 
than the one adopted in the channel test. The model is able to represent the coupled behavior and 
interaction between the fishnet, the fishing load and the fluid. The mean bar strain by section behaves 
as a monotone decreasing curve within the x direction, as expected, and the mesh angle shows a 
contraction at the middle of the net, but in the bulb takes higher values. 
 
In this preliminary application the flow is simulated as uniform with no turbulence modeling 
incorporated. Also the representation of the load of the net as punctual masses does not allow getting 
a real blocking of the flow. An immersed boundary representation of each individual free sphere 
forming the net load would allow to enhance the behavior of the flow around them, provided that a 
fine enough mesh is used for solving the flow. These two factors are the next steps of study to be 
performed; also further research is required to quantitatively assess the accuracy of the method. 
Further, the computational efficiency of the method can be improved, incorporating a parallel 
implementation of the DEM, coupled with the already parallel CFD method. 
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