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Abstract: A new kind of nonlinear weights, which is constructed based on both the ratios be-
tween different smoothness indicators and their values, are further analyzed in this paper. Through
equivalent transformation, it is found an adaptive parameter is constructed. The adaptive param-
eter can not only avoid division by zero, which is its original role, but also help the scheme obtain
optimal order and high-resolution. Near discontinuities the new adaptive parameter is very small.
Thus, discontinuity capturing ability is ensured. And in smooth regions it is much larger than
other choices in previous papers. As a result, it makes the new scheme closer to the corresponding
optimal linear scheme. Some canonical cases are used to test properties of the adaptive parame-
ter. Numerical results show that the weighted compact nonlinear scheme with the new parame-
ter achieves optimal order accuracy even near high-order critical points, captures discontinuities
sharply without obvious oscillation, has higher resolution and higher efficiency than schemes with
other parameters and has obvious advantage in capturing small scale structures.

Keywords: Hyperbolic conservation laws, High-order schemes, Weighted compact nonlinear scheme
(WCNS), Nonlinear weights, Compressible turbulence.

1 Introduction
High-order accurate and high-resolution schemes with discontinuity capturing ability are desired in simulating
multi-scale flows which contain shock waves, such as direct numerical simulation (DNS) and large eddy
simulation (LES) of high speed turbulence [1, 2, 3, 4]. Many high-order discontinuity capturing schemes
have been constructed. In 1980s, third-order essentially non-oscillatory (ENO) scheme was constructed by
Harten and Engquist [5]. Later, Jiang and Shu [6] put forward weighted ENO (WENO) scheme by combining
the weighting technique with the ENO scheme. Compared with the ENO scheme, the WENO scheme has
similar discontinuity capturing property but higher-order accuracy and higher resolution. However, the
WENO scheme proposed by Jiang and Shu [6] (WENO-JS) can not achieve optimal order accuracy near
critical points of smooth solutions where some leading derivatives of the solution vanish [7, 8].

To solve this problem, Henrick et al. [7] put forward a Mapped WENO scheme (WENO-M), which ensures
optimal order accuracy at first-order critical points. The WENO-M scheme exhibits better resolution than
the WENO-JS scheme, but its computation cost is about 25% higher than the latter. Borges and co-workers
[8] solved this problem by proposing Z nonlinear weights. And the WENO scheme with the Z nonlinear
weights (WENO-Z) can also achieve optimal order accuracy at first-order critical points[8, 9]. Compared
with the WENO-JS scheme, the WENO-Z scheme has similar computation cost, but can achieve higher
resolution and capture discontinuities more sharply[8, 9]. However, the WENO-M and WENO-Z schemes
still suffer a loss in accuracy near second-order and higher-order critical points. To achieve optimal order
accuracy near high-order critical points, Yamaleev and Carpenter [10, 11] proposed some limitations of ε, a
parameter originally introduced to avoid the denominator becoming zero. Castro, Don and coworkers [12, 13]
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made some further studies on the limitations of ε for the WENO-Z scheme and proved that the WENO-Z
scheme can achieve optimal order accuracy near high-order critical points if ε satisfies some carefully designed
limitations.

Many investigations on the ε have shown that it is far more than a parameter to avoid the denominator
becoming zero, it also affects the accuracy and resolution of the nonlinear schemes. Arandiga et al. [14, 15]
and Kolb [16] have made some valuable work on ε based on the work of Yamaleev and Carpenter [10, 11].
Osher and Fedkiw [17] have pointed out that ε is a dimensional quantity and have proposed a new formula
for ε which scales consistently with the local flow variables. Henrick et al. have found that ε has a dramatic
effect on the convergence order of the WENO-JS scheme near critical points [7]. Their results indicate that
the nonlinear weights have completely different performances for the case that βk is much smaller than or
comparable to ε and for the case that βk is much larger than ε. In another word, the values of βk have
been implicitly introduced into the nonlinear weights if ε is much larger than the machine zero. Thus, the
nonlinear weights in [6, 10, 11, 12, 13] are actually dependent on both the ratios between and the values of
βk. There is also some other work that makes the nonlinear effects related to the values of βk or some other
undivided flow variable derivatives to improve some properties of nonlinear schemes, such as the studies in
[18, 19, 20]. The numerical results in these papers have revealed the fact that considering the values of βk
properly can improve the properties of nonlinear schemes.

Traditionally, the nonlinear weights are designed to use the ratios between βk to detect discontinuities.
However, the ratios between βk may also be very large in smooth regions, for example, near critical points.
Thus these points may be treated like discontinuities, which may lead to a loss in accuracy. Note that the
values of βk in smooth regions are much smaller than those near discontinuities. Thus, it is possible for
nonlinear weights to distinguish critical points from discontinuities by considering the values of βk.

However, the properties (resolution, for example) of the nonlinear weights in [6, 10, 11, 12, 13] can be
improved only in a limited part of the smooth regions because the values of βk are effective only if βk is
much smaller than or comparable to ε and ε has to be small enough to restrict the oscillations which may
appear near discontinuities. Based on these observations, making full use of βk to improve the properties
of nonlinear schemes is the main motivation of the current work. In [21], a completely new method is
put forward to explicitly consider the values of βk in the basic formulas of the nonlinear weights. Besides
achieving optimal order accuracy, the resolution of the corresponding nonlinear scheme is improved in the
major smooth regions rather than only in a limited part of the smooth regions.

In this paper, we further investigate the properties of the new Y type nonlinear weights, and find that
it is equivalent to an adaptive ε, detailed analysis of which is presented in this paper. The present work
is based on weighted compact nonlinear scheme (WCNS) [22] which also uses nonlinear weights similar to
those of the WENO schemes. The WCNS can easily satisfy geometric conservation law (GCL) [23, 24]
and has superiority in simulations on complex grids [25]. Some canonical cases are used to test the shock
capturing ability, high frequency wave simulating ability and turbulence simulating ability of the WCNS with
the new nonlinear weights. It is shown that the new scheme not only achieves optimal order accuracy and
captures discontinuities without obvious oscillation, but also has higher resolution and obvious advantage in
simulating turbulence.

The organization of the paper is as follows. The new WCNS scheme and its further analysis are given in
Section 2. Section 3 presents numerical experiments to verify the theoretical analysis. At last, conclusions
are drawn in Section 4.

2 WCNS and it convergence analysis

2.1 WCNS
Hyperbolic conservation law has the following form

∂u

∂t
+
∂f (u)

∂x
= 0, (1)

where u is a conserved quantity, f describes its flux.
Consider a uniform grid defined by xj = j4x = jh, j = 0, · · · , N , where 4x = h is the uniform grid
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spacing. The semi-discrete form of Eq. (1) yields an ordinary differential equation:

duj(t)

dt
= −F

′

j , (2)

where uj(t) is a numerical approximation of u(xj , t), and F
′

j is a spacial discretization of ∂f∂x |x=xj
= f

′

j . In
this paper, the WCNS is used for spatial discretization.

The WCNS [22] was proposed by combining the weighted nonlinear interpolation with central compact
schemes of Lele [26]. The WCNS can satisfy GCL easily by using symmetrical conservative metric method
(SCMM) [24] to calculate grid metrics, and numerical tests have shown that WCNS is robust and can
give accurate results on complex grids [25, 27]. The WCNS consists of three parts [22, 28]: high-order
flux difference scheme for flux derivatives, numerical flux construction for cell-edge fluxes and high-order
interpolation for cell-edge variable values.

In the first part, hybrid cell-edge and cell-node compact scheme (HCS) in [28, 29] is adopted to calculate
flux derivatives. HCS is an extension of the cell-node mesh compact scheme and cell-centered mesh compact
scheme of Lele [26]. It uses both cell-edge and cell-node values on the right hand side of the scheme, which
results in better spectral properties [28, 30, 31]. The general form of HCS reads

γF
′

j−2 + χF
′

j−1 + F
′

j + χF
′

j+1 + γF
′

j+2 =
ϕ

h
(F̃j+ 1

2
− F̃j− 1

2
) +

1

h

3∑
m=1

am(fj+m − fj−m), (3)

In this paper, we consider a special case (HCS-E6)

F
′

j =
ϕ

h
(F̃j+ 1

2
− F̃j− 1

2
) +

192− 175ϕ

256h
(fj+1 − fj−1)

+
−48 + 35ϕ

320h
(fj+2 − fj−2) +

64− 45ϕ

3840h
(fj+3 − fj−3).

(4)

where fj+m is the flux at cell-node j +m,

F̃j+ 1
2

= F̃ (ũRj+ 1
2
, ũLj+ 1

2
), (5)

is the numerical flux at cell-edge j+ 1
2 , ũ

R
j+ 1

2

and ũL
j+ 1

2

are cell-edge variable values calculated by upwind-like
nonlinear interpolations. ϕ = 256/175 is taken, with which the HCS in Eq. (4) has eighth-order accuracy.

In the second part, the choice of numerical flux can be flexible. In this paper, Steger and Warming’s
numerical flux is used for its simplicity and good properties [32].

In the third part, nonlinear methods are used for cell-edge variable interpolations to capture disconti-
nuities without obvious oscillation. Under the assumption df/du > 0, Eq. (5) now has the form F̃j+ 1

2
=

F̃ (ũL
j+ 1

2

). And only formulas for ũL
j+ 1

2

is given. And L will be dropped for simplicity. Fifth-order weighted
nonlinear interpolation has the following form

ũj+ 1
2

=

2∑
k=0

ωkũ
k
j+ 1

2
, (6)

where ωk (k = 0, 1, 2) are nonlinear weights of the three sub-stencils, and ũk
j+ 1

2

(k = 0, 1, 2) are third-order
linear interpolations of uj+ 1

2
on the three sub-stencils with the following form

ũ0j+ 1
2

=
1

8
(15uj − 10uj−1 + 3uj−2),

ũ1j+ 1
2

=
1

8
(3uj+1 + 6uj − uj−1),

ũ2j+ 1
2

=
1

8
(−uj+2 + 6uj+1 + 3uj).

(7)
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The nonlinear weights are designed such that they approach to the optimal weights (d0 = 1/16, d1 = 10/16
and d2 = 5/16) as close as possible in smooth regions, meanwhile, they approach to appropriate values to
prevent interpolations from crossing discontinuities. Setting ωk = dk in Eq. (6), we can achieve the optimal
5th-order accuracy of Eq. (6).

The Z nonlinear weights [8] has the following form

ωk =
αk∑2
l=0 αl

, (8)

αk =
dk
βZk

= dk(1 + (
τ5

βk + ε
)q),

(9)

τ5 = |β2 − β0|, (10)

where βk is the smoothness indicator of the sub-stencils and ε is a parameter originally introduced to avoid
the denominator becoming zero and ε = 10−40 is used in [8].

Through careful deduction, it can be derived that necessary and sufficient conditions for fifth-order
convergence [21] are

2∑
k=0

(ω±k − dk) = O(h6), (11)

2∑
k=0

Akj (ω+
k − ω

−
k ) = O(h3), (12)

2∑
k=0

Akj (ω±k − dk) = O(h2), (13)

ω±k − dk = O(h2). (14)

where the superscript ± indicates the nonlinear weights for ũj± 1
2
. Overall, a simple sufficient condition for

optimal order accuracy is
ω±k − dk = O(h3). (15)

Obtaining optimal order of accuracy is important for high-order schemes. In the development of many
new nonlinear schemes [10, 11, 6, 7, 8, 13], analysis about convergence order plays important role, which
offers some theoretically guidance in constructing the new scheme.

2.2 Y type nonlinear weights
Usually, nonlinear weights are designed based on the ratios between the smoothness indicators (βk). However,
the values of smoothness indicators themselves can also reflect the smoothness of the flow field. By carefully
analyzing some previous work [10, 7, 13], we found that the value of smoothness indicators is of great
significance in obtaining optimal order and some other properties of the nonlinear weights can be improved
with the help of the values of βk. They are explicitly introduce into the nonlinear weights in the following
form,

βYk = (1− φ)β̄ + φβk, φ = φ
(
β̄
)
. (16)

Replacing βk by βYk in the original Z nonlinear weights[8], we can get the new Z-Y nonlinear weights.

αk = dk(1 +
τY5

βYk + ε
)

= dk

(
1 +

φ |β2 − β0|
β̄ + φ

(
βk − β̄

)
+ ε

)
,

(17)
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τY5 = φτ5 = φ |β2 − β0| , (18)

where

φ = tanh

(
β̄

C

(
βmax + C h5

βmin + C h5

)2
)
, (19)

in which
C (ρ) = max

(
ρ20
)
,

C (p) = max
(
p20
)
,

C (v) = max
(
c20
)
.

(20)

The C is added to make the scheme scale-invariant of flow variables [21], which is calculated by searching
the initial flow field, and no repeated cost is needed.

In this way, the values of smoothness indicators have been introduced into the new nonlinear weights.
And the nonlinear weights use both the value of and the ratios between βk to detect discontinuities[21]. It
can be verified that the Z-Y nonlinear weights satisfy the following error estimation

ω±k − dk = O
(
hmax(5,2ncp+3)

)
, (21)

where ncp is the order of extreme points (ncp = 0 means non-extreme points). The Z-Y nonlinear weights have
higher order accuracy than the Z nonlinear weights in the whole smooth regions, which not only maintains
optimal order accuracy of the overall scheme but also leads to smaller nonlinear errors. It is worth noticing
that the Z-Y nonlinear weights have even higher order accuracy near critical points rather than the loss in
accuracy of traditional nonlinear weights.

2.3 ε form of the new nonlinear weights
The values of the JS nonlinear weights and the Z-type nonlinear weights are determined by the ratios between
βk, i.e. β0 : β1 : β2. If βYk are used instead of βk, the nonlinear weights will be determined by the following
ratios and some equivalent transformations can be made

βY0 : βY1 : βY2 = [(1− φ)β̄ + φβ0] : [(1− φ)β̄ + φβ1] : [(1− φ)β̄ + φβ2]

= (β0 +
(1− φ)β̄

φ
) : (β1 +

(1− φ)β̄

φ
) : (β2 +

(1− φ)β̄

φ
)

= (β0 + εY ) : (β1 + εY ) : (β2 + εY )

(22)

It can be seen that in the new weights, we actually construct a adaptive εY . And Eq. (17) can be expressed
in another form

αk = dk(1 +
τ5

βk + εY
) (23)

In actual implementations, a very small number is added to avoid the denominator becoming zero.

εY =
(1− φ)(β̄ + 10−40)

(φ+ 10−40)
+ 10−40 (24)

2.4 Analysis of εY

Previous research works show that ε is a very important parameter because of its great impact on the
properties of the nonlinear weights [10, 7, 13]. In this sub-section, we first analyze the impact of ε, then,
analysis of the properties of εY is presented.

In some paper, ε is recommended to get a value much larger than machine zero. Besides avoiding division
by zero, it also has some other influences. In fact, the nonlinear weights are determined by the combination
of βk and ε, namely

(β0 + ε) : (β1 + ε) : (β2 + ε) (25)
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(a) ε = 10−6 (b) ε = εY

Figure 1: threshold effect of ε

Ratios closer to one mean that the nonlinear weights are closer to the corresponding linear weights. Assume
that βi = qβj = qβl, (i, j, l = 0, 1, 2; i 6= j 6= l), and the ratio of (βi + ε) : (βj + ε) becomes a function of βi as
is shown in Fig. (1a). The cases of q = 2, 10, 100 are given. It can be seen that as βi becomes smaller, the
value of (βi+ ε) : (βj + ε) gradually changes from βi : βj to one. When βk(k = 0, 1, 2) becomes small enough,
ε takes over the numerator and denominator, and shuts down the nonlinear effect. ε serves as a threshold
value here. And (βi + ε) : (βj + ε) changes from βi : βj to one when βi has similar magnitude to ε despite
the value of q. As a consequence, larger ε makes the nonlinear scheme closer to the corresponding optimal
linear scheme in smooth regions. However, larger ε also results in larger oscillations near discontinuities[7].

Since the ε has so dramatic influence on the nonlinear scheme, many researchers proposed their own
choices:

ε = 10−40, (26)

ε = 10−6, (27)

ε = 10−2, (28)

ε = h5, (29)

ε = h2, (30)

ε = 10−8h2, (31)

ε = 10−6 min

(
1,

min (βk)

max (βk)−min (βk) + 10−99

)
+ 10−99, (32)

which are proposed in [7, 6, 33, 10, 13, 18, 34], respectively. In Eq. (26) (27) and (28), ε is simply a fixed
number. It is very small in Eq. (26) and is considered to only play the role of avoiding the denominator
becoming zero. The ε in Eq. (27) and (28) may help nonlinear weights obtain optimal order in some
occasions, but cannot guarantee it. Eq. (29) and (30), which is a function of the grid spacing, can make the
YC nonlinear weights and Z nonlinear weights obtain optimal order, respectively. However, they have to be
small all over the flow field to maintain non-oscillatory property. The ε in Eq. (31) is a product of a small
number and a function of grid spacing, which has even smaller value than that in Eq. (27). The ε in Eq.
(32) is adaptive based on the flow field. However, its main purpose is to make it smaller near discontinuities
and it has a maximum value of 10−6. Overall, the ε in Eq. (26)-(32) has to be small, and the relatively
large ones (Eq. (28) and (30)) already destroy the non-oscillatory property in some cases as will be given in
Section 3.

Now we analyze the properties of the newly designed εY . Just like Fig. 1a, curves of (βi + εY ) : (βj + εY )
are given in Fig. 1b with assumption βi = qβj = qβl, (i, j, l = 0, 1, 2; i 6= j 6= l). Unlike the almost constant
threshold value in Fig. 1a, the threshold value varies with q = βi : βj when εY is used. The threshold value
goes smaller as q becomes larger. Now βi/βj is used to detect discontinuities, but it is not the only criteria
anymore. When βi/βj is large there is great suspicion of discontinuities, and εY switches the nonlinear
weights to the optimal linear ones only if βk(k = 0, 1, 2) are very small. On the contrary, small βi/βj
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Figure 2: effect of εY

means little suspicion of discontinuities, εY switches the nonlinear weights to the linear ones at relative large
βk(k = 0, 1, 2) values.

Near discontinuities, φ→ 1.0 [21], which leads to εY → 1−1
1 β̄ = 0. Since φ→ 0 and

(
βmax + C h5

)
/
(
βmin + C h5

)
→

1 in smooth regions [21], we get εY → 1/C by expanding φ near zero. The test case corresponding to Fig. 2
of [8] is used here to verify the theoretical analysis.

u(x, 0) =

{
−sin(xπ)− 1

2x
3 x ∈ [−1, 0)

−sin(xπ)− 1
2x

3 + 1 x ∈ [0, 1]
(33)

Periodic boundary condition and 100 grid points(h = 10−2) are used. Distribution of εY is plotted in Fig. 2.
ε in Eqs. (26)-(32) are also plotted for comparison. Near the discontinuity, εY = 10−40, which is very small.
So the scheme gets good non-oscillatory property using εY . In smooth regions, εY is of O (1), which is much
larger than the choices in Eqs. (26)-(32). As a result, the εY dominates the term βk + εY in most smooth
regions and the nonlinear weights are much closer to the optimal ones.

3 Numerical experiments
In this section, the new adaptive parameter and new scheme are tested using some canonical cases. The
new nonlinear weights are applied to the test cases without problem dependent parameters. In all the test
cases, third-order Runge-Kutta scheme [22] is used to discrete the time derivatives, and CFL=0.3 is used.
Nonlinear interpolations using characteristic variables are adopted for cases based on Euler and Navier-
Stokes equations. And sixth-order central explicit scheme is adopted to discrete the viscous terms in the
Navier-Stokes equations [35].

3.1 Convergence tests
Consider the linear advection equation (taking f(u) = u in Eq. (1) ) with initial condition

Case 1 :u(x) = x3 + cos(x), (34)
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Figure 3: First-order critical point convergence tests

The point x = 0 is a critical point of first-order (ncp = 1) for Eq. (34) .
The errors of numerical flux derivative F

′
are given in Fig. 3. The WCNS-Z can maintain fourth-order.

Result of the WCNS-JS exhibits some super-convergence phenomenon while the WCNS-ZO in [13] achieves
optimal order accuracy. However their errors are much larger than these of the optimal linear scheme. The
errors of the WCNS-Z-Y (WCNS-Z with εY ) coincide with the errors of the optimal linear scheme, which
indicates that optimal order accuracy is achieved. These results illustrate that the WCNS-Z-Y can achieve
optimal order accuracy at extreme points. In addition, the WCNS-Z-Y has smaller nonlinear errors than
other schemes tested.

3.2 Osher-Shu problem
There are shock/high frequency wave interactions in the Osher-Shu problem, which can be used to test the
performance of schemes in capturing high frequency waves. The initial conditions are

(ρ, u, p) =

{
(3.87143, 2.629369, 313 ) x ∈ [−5,−4],

(1 + 0.2 sin (kx) , 0, 1) x ∈ (−4, 5],
(35)

where k = 5. The problem is solved on 200 grid points and results at t = 1.8 are given in Fig. 4, in which
the reference curve is the result of the WCNS with JS nonlinear weights [22] on 2000 grid points. It can
be seen from Fig. 4a that results of the WCNS-Z with ε = 10−40, ε = 10−6, ε = h5, and ε of Peer et. al.
almost coincide with each other. The results with ε = 10−2 and ε = h2 are improved in the high frequency
wave region, however some oscillations occur near discontinuities. Result with ε = εY is the closest to the
reference curve and no obvious oscillation appears. In Fig. 4b, the εY distribution is given. We can see that
εY is very small near discontinuities and is of O (1) in smooth regions even near the high frequency waves.
As a result, it is implied that in smooth regions ratios between βk + εY is much closer to one than ratios
between βk and the resulting nonlinear weights are very close to the optimal weights. Nonlinear index (NI)
in [19] is used to estimate the nonlinear errors of WCNS-Z with different ε. And the smaller NI is, the less
nonlinear errors the scheme has. Fig. 4c shows the distributions of NI for different ε. Comparing the NI
distributions, we can conclude that the new εY can help the nonlinear weights decrease their nonlinear errors
and improve their resolution even in the high frequency wave region. The nonlinear errors of the WCNS-Z-Y
are several orders of magnitude smaller than the errors of the other schemes in smooth regions, which means
that the WCNS-Z-Y is very close to the optimal linear scheme in smooth regions.
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(a) Solutions of different schemes

(b) ε distribution of WCNS-Z-Y

(c) Nonlinear index distributions

Figure 4: Results of Osher-Shu problem
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(a) Density distribution

(b) ε distribution

Figure 5: Results of double Mach problem

3.3 Double Mach problem
Double Mach problem is widely used to test the performance of nonlinear schemes in capturing strong
two-dimensional discontinuities. The initial conditions are

(ρ, u, v, p) =

{
(8.0, 7.14471,−4.125, 116.5) , x < 1

6 + y√
3
,

(1.4, 0, 0, 1.0) , x ≥ 1
6 + y√

3
,

(36)

with a Mach 10 shock reflected from the wall with an incidence angle of 60◦ [6]. The calculations are based
on the two-dimensional Euler equations in [0, 4]× [0, 1] computation region with 960× 240 grid points.

Density distribution of the WCNS-Z-Y is shown in Fig. 5a, it can be seen that the discontinuities are
captured without obvious oscillation. The distribution of εY based on one characteristic variable in the
y-direction is illustrated in Fig. 5b, and as is analyzed εY has value of O (1) in most smooth regions and
very small value near discontinuities.

3.4 Homogeneous compressible turbulence
The WCNS-Z-Y is now tested in freely decaying homogeneous compressible turbulence without shock in a
periodic [0, 2π]× [0, 2π]× [0, 2π] square box. The efficiency of the WCNS-Z-Y is also investigated using side-
by-side comparisons of different schemes. The initial conditions are random, isotropic velocity fluctuations
satisfying a prescribed energy spectrum [36]

E (k) = Ak4 exp
(
−2k2/k20

)
, (37)

where k is the wave number, k0 is the wave number at which the spectrum peaks, and A is a constant chosen
to get a specified initial kinetic energy. In this paper, we take k0 = 8.0, Mt = 0.3 and Reλ = 72.0, where Mt

is the initial turbulence Mach number and Reλ is the initial Taylor micro-scale Reynolds number. Firstly,
the problem is simulated using the WCNS-Z-Y on a series of grids with different grid resolutions, and the
results are given in Fig. 6, where τ is the large-eddy-turnover time [36] and the kinetic energy is normalized
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Figure 6: Kinetic energy decay curve of simulations with WCNS-Z-Y

Table 1: Computation cost of different schemes

Grids 1923 1283 1443

Schemes WCNS-JS WCNS-Z WCNS-ZO WCNS-Z-Y WCNS-Z-Y WCNS-Z-Y
Costs 1.00 0.99 1.00 1.16 0.23 0.38

by the initial kinetic energy. As the grid gets refined, more kinetic energy is preserved in the simulations,
and the decay curve with 256 × 256 × 256 grid points is in good agreement with the DNS results in [36].
The preservation of kinetic energy is very important in turbulence simulations and can reflect the turbulence
simulation ability of numerical schemes.

In addition, side-by-side comparisons are conducted to investigate the efficiency of different schemes. As
shown in Fig. 7, the WCNS-Z-Y preserves more kinetic energy on 128 × 128 × 128 grid than the WCNS-
ZO does on 192 × 192 × 192 grid, and the WCNS-Z-Y preserves more kinetic energy on 144 × 144 × 144
grid than the WCNS-Z does on 192 × 192 × 192 grid, which indicate that the Z-Y nonlinear weights can
largely improve the turbulence simulation ability of the WCNS. The computation cost (normalized by the
computation cost of the WCNS-JS) is listed in Tab. 1. Although the WCNS-Z-Y is computationally more
expensive on the same grid, it successfully gets better results and thus the overall efficiency is much higher.
The decay curve of the optimal linear scheme is also presented in Fig. 7, and it almost coincides with the
curve of the WCNS-Z-Y, which implies that the WCNS-Z-Y has very small nonlinear errors in this problem.
Fig. 8 shows the Q iso-surface (Q=40) of different schemes at t = 1.0 on 128× 128× 128 grid. It is clearly
shown that the WCNS-Z-Y captures more flow details than the other schemes.

3.5 Shock turbulence interaction
Nonlinear schemes such as the WCNS and the WENO are widely used in turbulence simulations with strong
shocks for their good shock capturing ability and relatively high resolution [4, 19, 37, 38]. The interaction
of an isotropic turbulent flow with a normal shock wave has been extensively studied [1, 2], which can
test the turbulence simulation ability at the present of shock. The computational domain is defined by
[−2π, 2π]×[0, 2π]×[0, 2π]. And initially there is a stationary, Mach 2 shock at x = 0 with uniform flow
upstream and downstream of the shock. Periodic boundary conditions are used in the y and z directions.
At the inflow boundary the same procedure of Section 4.5 is adopted to produce the incident turbulence,
which is added to the uniform supersonic inflow. An extra sponge zone is added at the outflow boundary
(x = 2π), which is extended to x = 4π, where a sink term is added to the governing equations. The sink term
has the form of σ (u− ups) where σ varies linearly from 0 at x = 2π to 1 at x = 4π and ups is the uniform
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Figure 7: Comparison of kinetic energy decay curves with different schemes

Figure 8: Q iso-surface of different schemes at t = 1.0
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(a) Mt = 0.1 (b) Mt = 0.3

Figure 9: Streamwise variation of density fluctuation

post-shock flow [2]. Characteristic-based outflow boundary conditions are applied at the downstream end of
the sponge zone [39]. The simulations are run with two differentMt (Mt = 0.1 andMt = 0.3 ) while k0 = 8.0
and Reλ = 72.0 are used in all simulations. 192 × 64 × 64 uniform grid points are used in the simulations
(with 64× 64× 64 for the sponge zone). The simulations are run long enough to obtain statistically relevant
quantities and the procedure is detailed in [1]. No explicit sub-grid stress model is used.

Results with some kinds of ε are given in Fig. 9. It should be noted that the simulations with ε = 10−2

and ε = h2 blew up, which are too large near discontinuities to be essentially non-oscillatory. In both the
Mt = 0.1 and Mt = 0.3 cases the result with ε = εY preserves the most turbulence fluctuations, while the
rests almost coincide with each other and no obvious improvement can be observed. Some distributions of
NI are shown in Fig. 10. In the Mt = 0.1 case, nonlinear weights with ε = εY are very close to the optimal
weights through out the flow field except for the regions near the shock and near the inflow boundary. Near
the shock, nonlinear effect is activated to maintain essentially non-oscillatory property, and near the inflow
boundary it is activated because there is a fierce transition from the initially unphysical flow field to a
physical one, which can be reflected in Fig. 9. In the Mt = 0.3 case, the nonlinear weights deviate from the
optimal weights in a bit more regions, but they are still very close to the optimal weights in the major flow
field. On the contrary, for other ε the nonlinear weights deviate from the optimal weights in most regions
and obvious improvement is shown only in the sponge zone, where most turbulence fluctuations has already
been dissipated. In both cases, the WCNS-Z-Y has much better property in distinguishing turbulence (with
various kinds of critical points) from discontinuities.

4 Conclusions
In this paper, Z-Y nonlinear weights, which are designed with the idea of considering the values of βk, is
further investigated. It is found that by developing the Z-Y nonlinear weights it is equivalent to developing
an adaptive ε, the properties of which is theoretically analyzed and numerically tested. The εY is very small
near discontinuities and has value of O (1) in smooth regions. As a result, the scheme with εY can not only
capture discontinuities without obvious oscillation but also has improved resolution. The high-efficiency and
obvious advantage of the scheme with εY in turbulence simulations are clearly demonstrated.
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(a) Mt = 0.1 (b) Mt = 0.3

Figure 10: Distributions of NI of different schemes
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