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Abstract: This study reports selected benchmark results of an IBM based finite volume solver
within the framework of the open source toolbox foam-extend 3.2. The immersed boundary for-
mulation uses a discrete forcing approach based on a weighted least squares approximation that
preserves the sharpness of the boundary. In this context, we present two test cases: (1) a 2D
cylinder which oscillates transversely at a flow Reynolds number of 185, and (2) a 3D, rigid plate
that pitches about its leading edge at a Reynolds number of 2000. Preliminary force coefficient
results are compared with available computational and experimental data. In addition, a snapshot
POD analysis was performed on the pitching plate problem to reveal the energetic modes and to
identify the large-scale structure of the wakes.
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1 Introduction
Immersed boundary methods (IBMs) have been successfully employed in simulation of fluid problems as
an alternative to boundary-fitted methods, particularly in problems involving interactions with moving
boundaries. IBMs refer to a family of methods that may be classified broadly as either continuous or
discrete forcing approaches [1]. The computational fluid dynamics (CFD) code that is used in this work is
a recently released, open-source, IBM based finite volume solver foam-extend 3.2 [2, 3]. It is an extension
to the open-source continuum mechanics solver OpenFOAM (FOAM: Field Operation and Manipulation).
The code treats the immersed boundaries using the discrete approach, and the boundary conditions on rigid
walls are enforced by a weighted least squares procedure to preserve the sharpness of the body contour.
For the ultimate purpose of having a computational tool to simulate flow around fish-like bodies, a detailed
benchmarking study was performed. Here, we present two cases, namely, a two-dimensional, transversely
oscillating cylinder at a Reynolds number Re = U∞D/ν = 185 and a three-dimensional pitching plate about
its leading edge at a Reynolds number Re = U∞c/ν = 2000. Here, U∞ is the freestream velocity, D is the
cylinder diameter, c is the plate chord, and ν is the fluid kinematic viscosity.
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2 IBM Capabilities in FOAM
An extension to the open-source toolbox OpenFOAM called foam-extend 3.2 is used in this work. Cur-
rent release of the code features the IBM capability for a range of flows involving turbulence modeling and
multiphase flows. The primary interest in this work is to setup a simulation environment to study under-
water locomotion for low Reynolds numbers. Thus, we focus on unsteady, laminar, incompressible external
flows where a body in motion exists in a free stream of flow. For such simulations a new solver icoDyMIb-
Foam obtained by modifying the previously existing solver icoFoam by the additional IBM libraries. Such
modifications will be addressed briefly herein.

The conservative form of the continuity and Navier-Stokes equations under the assumptions of unsteady,
laminar, incompressible flow are

∂V

∂t
+∇ · (VV)−∇ · (ν∇V) = −∇p (1)

∇ ·V = 0 (2)

where V, p and ν represent the velocity field, kinematic pressure field and kinematic viscosity. The latter is
converted to a Poisson equation for pressure. Within the context of FOAM, these equations are discretized
with a finite-volume approach where an integration is applied throughout the non-overlapping polyhedral
cells of the flow domain. This is followed by the conversion into surface integrals (by Gauss theorem) and
eventually discrete surface fluxes. In the current solver, the pressure-velocity coupling is handled by the
PISO (Pressure Implicit with Splitting of Operator) algorithm. Details of the numerics can be found in [2]
and [3].

The immersed boundary solver requires a background grid and an immersed boundary (IB) surface defined
by the user. The IB surface is introduced as an STL (STereoLithography) file which involves the triangulated
IB grid data. At each time step of an unsteady flow around a moving body, the code tags the cells as fluid, IB,
or solid cells. The boundary conditions (BCs) to be enforced on the IB surface are introduced by assigning
appropriate values to the variables in IB cells. These values are found from a weighted least squares (WLS)
interpolation. It is this interpolation that ensures a sharp representation of the IB.

For BCs, a multivariable quadratic interpolation is performed using the cells that fall within the region of
influence defined by a circle around each IB cell. In the context of WLS, the summation

∑n
i=1 wi(φi− φ̃i)2 is

minimized for n cells in the interpolation stencil for a given variable φ. For the Dirichlet BC, interpolation
in 2D reads

φ̃i = φibp + C0Xi + C1Yi + C2XiYi + C3X
2
i + C4Y

2
i (3)

where Xi = xi−xibp and Yi = yi− yibp. Here, the index i represents the ith cell in the interpolation stencil,
and the and the index ibp represents the point on the IB surface which is closest to the IB cell that owns the
stencil. The unknown coefficients are found by C = (MTWM)−1MTWA, where the entries of the vector
A are φ̃i − φibp. Therefore the design matrix is built solely on the geometric information as,

M =


X1 Y1 X1Y1 X2

1 Y 2
1

X2 Y2 X2Y2 X2
2 Y 2

2

· · · · · · · · · · · · · · ·
Xn Yn XnYn X2

n Y 2
n

 (4)

and the corresponding weights are the diagonal element of the weight matrix W are defined by

wii =
1

2

[
1 + cos

(
π

ri
Srmax

)]
(5)

where S is a tweaking parameter and r is the local parameter that collects the distances between the stencil
cells and the owner IB cell. Once the coefficients are found, the value in the IB cell is interpolated by
substituting the owner IB cell coordinates in Eq. 3.
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Neumann BCs are imposed in a similar fashion. For the pressure interpolation in 2D,

pi = C0 + C1Xi + C2Yi + C3XiYi + C4X
2
i + C5Y

2
i (6)

Normal gradient of pressure can be written in terms of the tri-face normal n = (nx, ny) as,

∂p

∂n
=
∂p

∂x
nx +

∂p

∂y
ny (7)

Here the partial derivatives are obtained by differentiating Eq. 6. Augmenting the design matrix by one row
for the pressure gradient term gives,

M =



1 X1 Y1 X1Y1 X2
1 Y 2

1

1 X2 Y2 X2Y2 X2
2 Y 2

2

· · · · · · · · · · · · · · · · · ·
1 Xn Yn XnYn X2

n Y 2
n

0 nx ny nxYibp + nyXibp 2nxXibp 2nyYibp


(8)

Similarly, vector A which collects the pressure values in the stencil cells now is augmented to include the
pressure gradient value as

A = [p1 p1 · · · pn ∂p/∂n]
T (9)

Default weights for the Neumann BC imposition are

wii = 1− ri
Srmax

(10)

After computing the coefficients, pressure value in the IB cell is found by Eq. 6.
Motion of the immersed boundary is handled using the dynamics mesh libraries. Prescribed motions

are hooked by defining a function for the position vector (xib). The value of the Dirichlet BC on the IB is
updated by

Vib =
xib − xib,old

∆t
(11)

at each time step.

3 Validation Cases and Results
Two test problems visited within the current scope of this study are the oscillating cylinder and the pitch-
ing plate problems. The open-source snappyHexMesh utility is used to generate a non-uniform grid in a
sufficiently large rectangular domain enclosing the IB. Multiple levels of refinement are generated so that
the background grid size in the finest sub-domain around the IB is equal to the grid size on the IB. Typical
boundary conditions are shown in Figure 1 for the 3D pitching plate problem. For the 2D oscillating cylinder
same BCs apply except the front and back planes which are set as empty. All cases are initialized with the
solver potentialIbFoam (potential flow solver with IB support) to prevent divergence at the start-up. Cell
CFL numbers are kept below 0.5 by setting the time step appropriately in each problem.

3.1 2D Flow Past a Transversely Oscillating Cylinder
We perform 2D simulations of a transversely oscillating cylinder located in a relatively large rectangular
domain defined by corners (-15D, -15D) and (35D, 15D). Uniform freestream velocity is U∞. Instantaneous
position of the cylinder is defined by

y(t) = A sin(2πt/T ) (12)

The grid size on the cylinder is ∆s=0.01D. Four levels of refinement are created around the cylinder
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Figure 1: Domain and boundary conditions for the pitching plate problem (ω: angular frequency).

(a) (b)

Figure 2: Views of the nested, unstructured grids created with the snappyHexMesh utility: (a) Cylinder
problem (coarsened for better view), (b) Plate problem.

(Figure 2a). Instantaneous drag (CD = FD/
1
2ρscU

2
∞) and lift (CL = FL/

1
2ρscU

2
∞) coefficients are recorded.

The relevant parameters of the problem are the Reynolds number, excitation amplitude scaled by diameter,
A/D, and the excitation frequency scaled by the vortex shedding frequency of a fixed cylinder, fe/f0. We
consider the cases with ReD = 185, A/D = 0.2 and 0.8 ≤ fe/f0 ≤ 1.2 to reproduce the results presented in
[4]

Figure 3 shows the temporal variations of the force coefficients. The curves are in qualitative agreement
with previous findings [4]. In general, spurious oscillations are found in force signals which become more pro-
nounced as frequencies get smaller. This is usually observed in IBM based computations which is attributed
to the cells that change their flags from solid to fluid. Several algorithms were proposed ([5], [6]), however,
current version of the code lacks such treatment.

In Figure 4a, time-averaged force coefficients are shown in comparison with the results from [4]. A good
agreement is obtained with slightly higher drag for all frequencies investigated.

3.2 3D Flow Past a Pitching Plate
In this validation case, we introduce three-dimensionality by considering the flow past a pitching rectangular
plate about its leading edge. The plate has a thickness of 0.037c. The box domain enclosing the body is
defined by the corners (-2c, -2.5c, -2.5c) and (6c, 2.5c, 2.5c). Three levels of refinement are created (Figure
2b). Prior mesh convergence study showed that a grid size of ∆s = 0.0125c in the finest subdomain yields
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Figure 3: Temporal variation of the force coefficients for the oscillating cylinder case at ReD = 185: (a)
fe/f0 = 0.8, (b) fe/f0 = 0.9, (c) fe/f0 = 1.0, (d) fe/f0 = 1.1, (e) fe/f0 = 1.2. Upper curves in figures
correspond to CD.

sufficient accuracy to capture important aspects of the flow. The Reynolds number is set to Rec = 2000.
The wake structure and its relation to the forces exerted on the fluid by the propulsor is of major concern.
The net thrust (FT ) produced by the motion is non-dimensionalized as the thrust coefficient,

CT =
FT

1
2ρscU

2
∞

(13)

where s is the span. Propulsive performance is represented by the characteristic curve of CT as a function
of the Strouhal number based on the wake width (Aw),

St =
fAw

U∞
(14)

where Aw is often assumed to be the peak-to-peak amplitude of the trailing edge which will be adopted here.
The pitching motion is defined by the angle between the streamwise direction and the chord as,

β(t) = βmax sin(2πt/T ) (15)

Results are compared with experiments performed in a water channel used by Dewey et al. [7], where a
more complete description of the apparatus may be found. The angle βmax is fixed to 8° and the frequency
is varied to change the Strouhal number. Figure 4b compares the time-averaged thrust (CT ) computations
with experiments. The numerical results are generally a little higher than the experimental data, and the
agreement seems to improve with Strouhal number. It is also noted that the anticipated quadratic behaviour
of CT is obtained in the simulations.

Iso-surfaces of non-dimensional vorticity magnitude are shown in Figure 5. Two plots correspond to
the same Reynolds number (Rec = 2000) but different Strouhal numbers (St=0.2 and St=0.4). These
Strouhal numbers belong to two distinct wake states where 2S type wakes are observed in the former and
2P wakes are observed in the latter. Contours show that these wakes are captured sufficiently in the current
implementation.

In order to reveal the energetic structures in the flow field of the pitching plate problem, we conduct a
snapshot POD (Proper Orthogonal Decomposition) analysis on the velocity field obtained from simulations.
In this analysis, the velocity field is decomposed into mean and fluctuating parts as
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Figure 4: Comparison of mean force coefficients: (a) The oscillating cylinder case at ReD = 185. Solid,
dashed and dash-dotted lines correspond to C̄D, CL,rms and CD,rms from [4], respectively. (b) Experimental
and computational time-averaged thrust coefficient for a pitching plate at Rec = 2000.

V = Vm + V
′

(16)

and the fluctuating part is written as

V
′
(x, t) =

M∑
i=1

αi(t)Φ(x) (17)

An eigenvalue problem in the form of CA = λA is solved to obtain eigenvalues (λ) and eigenvectors (A)
where the entries of the matrix C are the inner products cij = (V′i,V

′
j). Then the POD modes are found

by,

Φi =
1√
λi

N∑
j=1

Ai
jV
′
j (18)

where the Ai
j is the j th element of the ith eigenvector Ai [8]. Figure 6 shows the eigenvalues (λ) obtained

from the POD analysis for the pitching plate at Rec = 2000 and St=0.2. Results indicate that modes that
are comparable in terms of contained energy appear in pairs. Additionally, the accumulation of the energy
levels yield that 3 pairs of modes are sufficient to represent the 94 percent of the fluctuating kinetic energy.
Mode contours are shown in Figure 7. Mode 1 manifests a structure that is similar to the observed 2S wake.

4 Conclusion and Future Work
Selected results of a preliminary validation process of a recently released, open-source based IBM solver has
been presented in this work. Results show that the code seems promising, especially for the computational
studies in the bio-fluids community. Future work will include more detailed study on the solver such as the
assesment of the overall accuracy, comparison of pressure Poisson solvers and a detailed inspection of the
spurious force oscillations.

References
[1] Rajat Mittal and Gianluca Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37:239–261,

2005.

6



(a) (b)

Figure 5: Iso-surfaces of non-dimensional vorticity: (a) Rec = 2000 and St=0.2, (b) Rec = 2000 and St=0.4.
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Figure 6: Eigenvalues obtained from the snapshot POD analysis for the plate problem at Rec = 2000 and
St=0.2.

(a) (b)

Figure 7: Mode contours at the centerline plane: (a) Mode 1, (b) Mode 3.
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