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Abstract: In the present study, a numerical investigation of steady-state Stokes �ow problem on a
lid-driven square cavity is carried out using mesh-free local radial basis function-based di�erential
quadrature (RBF-DQ) method. This method is a combination of di�erential quadrature approxi-
mation of derivatives and function approximation of RBF. The weighting coe�cients of (RBF-DQ)
method are determined by using Radial Basis Functions (RBF) as test functions instead of using
high-order polynomials. Discretized derivatives of velocity and pressure at a point is de�ned by
a weighted linear sum of functional values at its neighboring points. In this work, this method is
applied to the two-dimensional Stokes �ow in a fully coupled form using a staggered arrangement
of primitive variables. Results obtained from the RBF-DQ method are compared with the existing
result in the literature on lid-driven cavity problem. In order to get better understanding for the
RBF-DQ method, outcomes are discussed in details.
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1 Introduction

Stokes �ow problems in which the viscous e�ects dominates the inertial and gravitional e�ects are observed
in many practical applications such as MEMS, polymer/food manufacturing, settling of dust particles and
the swimming of microorganisms. Traditional numerical techniques such as �nite di�erence (FDM), �nite
volume (FVM) and �nite element methods (FEM) are used to solve many di�erent complex problems includ-
ing Stokes �ow. However, it is very well known that these methods strongly rely on the mesh properties and
for complex domains, mesh generation takes considerable amount of time. In order to overcome mesh-related
di�culties, mesh-free methods have been developed.

Recently, a new mesh-free method was proposed based on the so-called radial basis functions (RBF)[1, 2].
Especially for higher dimensions, it is found that RBFs are able to construct an interpolation scheme with
important properties such as higher e�ciency, good quality and capability of handling scattered data [3].
In order to approximate derivatives by using RBFs, the RBF-DQ method, which combines the di�erential
quadrature approximation of derivatives and function approximation of RBF is proposed by Shu and co-
workers [3, 4].

In the present study, RBF-DQ method is applied to a two-dimensional domain of lid-driven cavity problem
for Stokes �ow. In the proposed approach, mass and momentum equations are solved in a coupled manner.
Obtained results are in good agreement with the available data in the literature.

1



2 Local MQ-DQ Method

The essence of the DQ method is that the partial derivative of an unknown function with respect to an
independent variable can be approximated by a linear weighted sum of functional values at all mesh points.
Assuming that a function f(x) is su�ciently smooth, its m-th order derivative with respect to x at a point
xi can be approximated by DQ as [4]

∂mf(xi)

∂xm
=

Ns∑
j=1

wm
ij f(xj) i = 1, 2, 3, ..N (1)

where xj , j = 1, 2, 3, ..Ns(number of supports) are the discrete support nodes of xi, f(xj) and w
m
ij are the

function values at these points and the related weighting coe�cients, respectively. The index i refers to
the reference node in a global discretization of N nodes while j is a local index for the respective support
nodes as shown in Figure 1. The key of Local DQ method is the determination of weighting coe�cients

Figure 1: Supporting knots around a speci�c knot

wm
ij which requires a set of Ns basis functions. This approach can be naturally applied to any dimensions.

One of the important advantages of the DQ method as a global (high-order) approach, in comparison with
the low order methods such as FVM or FDM, is its ability to generate numerical results with high order
of accuracy by using a considerably small number of mesh points. Among various RBFs, the multiquadric
function (MQ) is chosen due its to accuracy, stability and e�ciency [1]. Local DQ with Multiquadrics (MQ)
RBF (φ(r) =

√
r2 + ε2 ε > 0 where r=‖x− xj‖2) is known as Local MQ-DQ.

In order to approximatem-th order derivative with respect to x of a function f(x) at a point xi, we obtain
the following system of linear algebraic equations by substituting RBF in Equation (1) for the weighting
coe�cients

∂mφp(xi)

∂xm
=

Ns∑
j=1

w
(m)
ij φp(xj) (2)

where φp(x) = φ(x, xj) [5]. In matrix form, the vector of weighting coe�cients wij for the �rst order
derivative can be given as

∂φ1(xi)

∂x

∂φ2(xi)

∂x
...

∂φN (xi)

∂x


=


φ1(x1) φ1(x2) · · · φ1(xN )

φ2(x1) φ2(x2) · · · φ2(xN )
...

...
. . .

...
φN (x1) φN (x2) · · · φN (xN )




w

(1)
i1

w
(1)
i2
...

w
(1)
iN

 (3)

Relative error is dependent to the the shape parameter and the stencils. Figure 2 shows di�erent stencils
which can be used in calculations. For this study, a circular region is chosen as illustrated in Figure 1.
However, for each reference knot, the number of supporting knots may be di�erent.
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Figure 2: Di�erent supporting knots distributions

In the Local MQ-DQ method, the shape parameter εmay have a strong in�uence on the accuracy of numerical
results. The number of supporting knots and the size of supporting region mainly e�ect the optimal value of
ε. The size e�ect of supporting region can be minimized by normalization of scale in the supporting domain.
The following transformation can be made for normalization to transform the local support region to a unit
circle for the two dimensional case [4]

x̄ =
x

Ri
, ȳ =

y

Ri
(4)

where (x, y) represents the coordinates of supporting region in the physical space, (x̄, ȳ) denotes the coor-
dinates in the square, Ri is the minimal radius of the circle for the chosen knot i, enclosing all knots in
the supporting region. The coordinate transformation in Equation (4) also changes the formulation of the
weighting coe�cients. For example, by using the di�erential chain rule, the �rst order partial derivative with
respect to x in the Local MQ-DQ approximation can be written as

∂φp(x)

∂x
=
∂φp(x)

∂x̄

dx̄

dx
=
∂φp(x)

∂x̄

1

Ri
=

Ns∑
j=1

w
(1)
ij

Ri
φp(xj) i = 1, 2, 3, ..N (5)

It can be seen that the shape parameter ε is equivalent to Riε̄ due to scaling. Thus, the modi�ed RBF can
be given as following

φ(r) =
√
r2 + ε2 =

√
(x− xi)2 + (y − yi)2 + ε2 =

√
(x̄− xi

Ri
)2 + (ȳ − yi

Ri
)2 + ε̄2 (6)

3 Problem Statement

For the incompressible viscous �uid �ow in the Cartesian coordinate system, the continuity and the mo-
mentum equations with no convective terms (due to small Reynolds number, meaning that viscous forces
dominate the dynamics) represent the Stokes �ow. The continuity, x-momentum and y-momentum equations
can be written as follows:

−∂u
∂x
− ∂v

∂y
= 0 (7)

∂p

∂x
=
∂2u

∂x2
+
∂2u

∂y2
(8)

∂p

∂y
=
∂2v

∂x2
+
∂2v

∂y2
(9)
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The boundary conditions for a square domain [0, 1]2 are given as

u(0, y) = 0 v(0, y) = 0 (10)

u(1, y) = 0 v(1, y) = 0 (11)

u(x, 0) = 0 v(x, 0) = 0 (12)

u(x, 1) = 1 v(x, 1) = 0 (13)

The following steps describe the solution procedure:

1. Create uniformly distributed nodes for velocity and pressure variables.
2. Specify the shape parameter needed for MQ RBF.
3. Specify the radius of the circle which contains the supporting nodes around the speci�c node.
4. Calculate the weights for x and y derivatives of RBF (�rst and second derivatives).
5. Convert the PDEs in to the algebric equations (Ax = b) using calculated weights and apply the boundary
conditions in order to solve the primitive variables as follows:

x−mommentumy −mommentum
continuity

⇒
 [∇2] 0 [∂/∂x]

0 [∇2] [∂/∂y]
[∂/∂x] [∂/∂y] 0

uv
p

 =

b1b2
b3

 (14)

6. Plot the results and compare with the benchmark work.
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Figure 3: a) u-velocity b) v-velocity c) Pressure d) Streamlines (using Local MQ-DQ for ε̄2 = 1, 10000
pressure and 22000 velocity points) e) u-velocity from Ref. [6] and Local MQ-DQ at x = 0.5
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Table 1: Results for Local MQ-DQ

ε̄2 Velocity nodes Pressure Nodes RMS Error Maximum Error

0.05 220 100 6.548486e-03 1.568317e-02
1.0 220 100 6.901535e-03 1.621041e-02
0.05 5100 2500 7.973957e-04 2.532979e-03
1.0 5100 2500 6.865774e-04 2.089763e-03
0.05 20200 10000 3.980599e-04 1.312594e-03
1.0 20200 10000 3.309334e-04 1.076999e-03

The number of points for velocity/pressure variables and scaled shape parameter square value ε̄2 used
in the numerical simulations are given in Table 1. The nodes are distributed uniformly in the domain. For
calculations 0.05 and 1.0 values are chosen for the scaled shape parameter square ε̄2. Local MQ-DQ results
for ε̄2 = 1 and 10000 pressure, 20200 velocity nodes are presented in Figure 3. The values taken from Ref.
[6] for horizontal u velocity is compared with three di�erent node distribution (10, 50 and 100) at x = 0.5
in terms of RMS and Maximum error in Table 1. It was found that the numerical results obtained by Local
MQ-DQ are in good agreement with the one given in Ref. [6] as shown in Figure 3e and Table 1. RMS and
Maximum error decrease with increasing number of points. Moreover, selected values of shape parameter ε
have a limited e�ect on the RMS (%5−%17) and Maximum (%3−%18) errors.

4 Conclusion and Future Work

Two dimensional Stokes �ow in a lid-driven cavity is analyzed numerically by implicit mesh-free Local MQ-
DQ method. It is found that the numerical results obtained by the Local MQ-DQ method agree very well
with available data in the literature. The key importance of this study is solving the continuity and the
momentum equations in fully coupled form for Local MQ-DQ method, which, to the authors' knowledge, has
not been presented in the literature before. The proposed method can also be extended for the applications
of steady and unsteady �ows at di�erent Reynolds numbers in two or three dimensions.
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