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Abstract: In this paper, a numerical scheme for solution of Generalized Burgers-Huxley 

equation using improved Nodal integral method (MNIM) is proposed.  In this approach, the 

domain is divided into nodes and the derivation of the scheme is based on local transverse 

integration process (TIP) of PDEs within these nodes. A set of algebraic equations, based on 

the local analytical solution of ODEs obtained by TIP, is derived. The results are obtained by 

developed method for several values of the parameters. These results are compared with 

analytical solution and the results of few other well established methods. It is observed that the 

current method is capable of capturing the sharp wave front with quite coarse grids more 

accurately in comparison to the traditional numerical approaches.  
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1     Introduction 
 
Nonlinear partial differential equations are often encountered in major areas such as physics, 

chemistry, mathematics and engineering. The majority of the real life problems are nonlinear whose 

solutions are quite challenging. Researchers have developed many schemes, however, there is still 

significant scope for improvement in computational efficiency. For improving computational 

capacity, there is a need to develop new schemes, improve existing numerical methods and develop 

efficient solvers. Nodal Integral method (NIM) is a preferred accurate coarse grid method. NIM was 

used to solve neutron transport equations in early 1970s [1] and it is found that the scheme is able to 

produce accurate results with relatively coarser grids as compared to traditional methods. The key 

step involved in NIM is the transverse integration process (TIP) [2] which reduces the PDEs into sets 

of approximate ODEs that can be solved analytically within a node. The final sets of difference 

equations depend on the analytical solution of these ODEs. This local approximate analytical solution 

is one of the main distinguishing features of NIM which significantly increases the accuracy of the 

scheme. The TIP process leads to more number of discrete unknowns in each cell or node for NIM 

but the overall number of discrete unknowns in the entire geometry are less due to the use of coarser 

grid which nullify the effect of more unknowns per node. In other words, for a given node size, a 

second-order coarse node scheme gives more accurate solutions than traditional methods. However, 

these schemes depend on the transverse-integration which restricts the scheme to region with 
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boundaries parallel to axis, i.e. in rectangular geometries. The simplicity in developing procedure for 

NIM stresses its importance with possible extension of its applications in the fields of fluid flow, heat 

transfer and other branches of physics and engineering. To show the accuracy and efficiency of NIM, 

nonlinear PDE known as Generalized Burgers-Huxley equation (GBHE) is chosen as a test problem. 

GBHE is very commonly used to describe the interaction between reaction mechanisms, convection 

effects and diffusion transport [3] [4], nerve propagation [5], wall motion in liquid crystals, 

population dynamics [6], chemical kinetics, electrodynamics, transport phenomena [7] . Burger’s 

equation is one of the reduced forms of Burgers –Huxley equation which is used as a model equation 

to describe shock wave formulation, sound wave and traffic flow [8]. Burgers equation has often been 

used as a simplified form of the Navier-Stokes equation (without pressure terms) [5] and has been 

used widely for comparison of numerical schemes in different studies. A similar approach has been 

used for solving Burger Huxley equations [9]. However, in the current method some improvements 

have been made to the above mentioned method. Moreover, a comparison with the existing schemes 

have been carried out in the present work. In the present work, the solutions of the NIM scheme 

developed for GBHE are compared with analytical solution as well as those obtained with other 

numerical schemes. The comparison is carried out to demonstrate the capability of NIM to give more 

accurate solutions with coarse grids. 

 

2     Problem Statement 
 
The generalized Burgers –Huxley equation [10]-[11] is given as, 

    
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and exact solution is given in [11,12] as, 

    
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U x t tanh a x a t
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where a1 and a2 are given by, 
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Here, U is the velocity and α, β, γ, δ are the parameters, 0, (, 0,1)0     . When   0, 1 it 

reduces to Huxley equation and when   0 , equation reduces to Generalized Burgers Equation [11] 

 

 

3      Formulation: Modified Nodal Integral method 

 
One dimensional generalized Burgers’-Huxley equation is given by, 

    
  

         
  

2
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(1 )( )     &   0

U U U
U U U U l x l t

t x x
 (3) 

where U  is velocity in x-direction, α, β, γ, δ are different parameters. The entire domain is divided 

into ‘n’ nodes over (x, t) plane as shown in Figure 1 of size ‘2ai,j’ in space and ‘2τi,j’ in time, 

respectively.  Each of these nodes have origin at its center. Each of these nodes have origin at its 
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center. Now Eq. (3) is averaged over time by operating with


 




1

2
dt , and averaged over space by 

operating with 





1

2

a

a

dx
a

for each node, respectively. This averaging of equation with in a node is 

known as TIP.  

 
Figure 1. Coordinate system and the relation between velocities with node 

 

 
Figure 2. Coordinate system with in operational node. 

 
TIP gives number of ODEs (per node) equal to the number of independent variables.  
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In this process, index (i,j) are dropped for the sake of simplicity in development and it is subsequently 

introduced whenever necessary. While performing TIP, average of product is approximated as 

product of averages for nonlinear term which will leads to a second order approximation. Now 

defining 








 
,

,,

1
( )

2

i j

i j

t

i j

U x Udt  and using following approximation [1], 
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Nonlinear term in the equation is linearized by considering time averaged velocities ( )
t

U x to be 

constant over nodes. By using the approximation stated above, the averaging of Eq. (3) over time, 

yields, 

 
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t t
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U S x
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, (7) 

Note that the remaining terms in eq. 3 are incorporated in pseudo source term 2( )
t

S x . Similarly for 

space averaged velocity ,
x

i jU , 

 1
( )

( )

x
xdU t

S t
dt

         (8) 

Here, 1 ( )
x

S t  is the space averaged pseudo source term in the node (i,j) and 2( )
t

S x  is the time averaged 

pseudo source term in the node (i,j) which is a only function of time and space, respectively. The 

pseudo-source terms are now expanded in Legendre polynomials and truncated at zeroth order which 

leads to constant pseudo source terms. On integrating equation (7) and (8) and applying the nodal 

boundary conditions as shown in the Figure 2, one gets, 
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  (10) 

In the development, till now all nodes are independent of each other. For developing the relation 

between two consecutive nodes, continuity is applied at the interface of two nodes, i and i+1. Using 

continuity on the solution given in equation 10 and with the velocity notation as shown in Figure 3, 

one gets Eq. (11).  The obtained equation is a three point scheme.  

 
Figure 3. Averaged quantities showing interdependency with in adjacent nodes  
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From equation 9 and 11, there are two equations and four unknowns (
, ,

, , 2 , 1 ,, , ,
x t t x x t
i j i j i j i jU U S S ) thus two 

extra constraints are needed to evaluate all the four unknowns. First constraint equation is obtained by 

averaging the original equation with respect to space and time. It gives the relation between pseudo 

source terms. 
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The RHS of above equation 12 can be approximated by considering average of product equal to 

product of averages, where as in [9] different approximation has been proposed for RHS.  
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and the second constraint is obtained by enforcing the uniqueness of the node averaged variable i.e., 

, ,,
x t

i j i jU U  (15) 

On solving equation (9) and (11) by applying the constraints given by equations (14) and (15), we get 

the final sets of difference equation per node  
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4      Numerical Results 

Modified Nodal integral method (MNIM) is used to develop the numerical scheme for solution 

Burgers-Huxley equation. MNIM is a coarse node method which is based on the analytical solution of 

ODEs within the node. Picard type method is used to solve the developed scheme. To show the 

effectiveness of the developed method comparison with analytical solution as well as various other 

developed schemes is done. In all the cases,  

the initial condition used is,     

1

1,0 1
2

U x tanh a x
 

  
 

, (18)  

the Left boundary condition used is,     
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and the right boundary condition used is,     
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1 2, 1 (
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U l t tanh a l a t
 

     
 

. (20)  

 
The parameters taken for comparison are α = 1, β = 1, γ = 1, δ = 1 and 2, dt = 0.001 and 0.01 with 

different grid sizes as well as different integral time steps. Here all simulations are done up to time, T 

= 6 units. 
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   (iii)       (iv) 
Figure 4. Comparison between NIM (asterix) and analytical solution (blue line) (dt = 0.001, T = 6, δ = 1, for 

(i) 2a = 1, (ii) 2a = 0.5, (iii) 2a = 0.33, (iv) 2a = 0.25 
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Figure 5. Comparison between NIM (asterix) and analytical solution (blue line) (dt = 0.01, T = 6, δ = 1, for 

(i) 2a = 1, (ii) 2a = 0.5, (iii) 2a = 0.33, (iv) 2a = 0.25. 
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Figure 6. Comparison between NIM (asterix) and analytical solution (blue line), T = 6,  for (i) 2a = 1, dt 

= 0.001 and δ = 1, (ii) 2a = 0.5, dt = 0.001 and δ = 1, (iii) 2a = 0.25, dt = 0.001 and δ = 1, (iv) 2a = 1, dt 

= 0.01 and δ = 2, (v) 2a = 0.5, dt = 0.01 and δ = 2, (vi) 2a = 0.25, dt = 0.01 and δ = 2. 

From the Figures 1 to 6 reporting comparison of numerical results with analytical solution, it can be 

observed that NIM is capable of obtaining better results with coarse nodes. For δ = 1 both the 

numerical as well as analytical match very well but for δ =2 some error in results is found. These 

errors in the solutions for δ = 2 are due to higher nonlinearity in the equations. Further norm of 

absolute errors of NIM compared to analytical solutions for different grid size are calculated and 

plotted in log-log scale. It can observed from the Figure 7 that the scheme is second order as graph is 

straight line with a slope of 2.  
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Figure 7. Log of RMS error vs log of node sizes 
 

Further, the CPU running time for δ = 1 and δ = 2 are plotted with various node sizes and are given in 

Figure 8. To the best of author’s knowledge no such analysis is found in literature. Here the CPU 
running time is calculated up to one integral time step. 
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Figure 8. Plot for CPU running time vs grid size for (i) δ = 1, (ii) δ = 2 

 
Moreover, the comparison of NIM with Variational Iteration Method (VIM) [13], Adomian 

Decomposition Method (ADM) [11] and Differential Quadrature Method (DQM) [14] are done for 

different parameters reported here. The comparisons are listed in Table 1 to 5. It is found that the NIM 

is much more accurate than VIM as well as ADM. In the reference, Adomian decomposition method 

is used to approximate the differential equation by infinite convergent series. On the other hand, 

DQM is fully based on the higher degree approximation of spatial derivatives whereas VIM is started 

with trial function and with iterations the order of approximation is increased.  
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Table 1. Absolute error between of MNIM with ADM and VIM (α = 1, γ = 0.001, β = 1, δ = 1, dt = 
0.0001) 

α = 1 β = 1 γ = 0.001 δ = 1 dt = 0.0001 

x  t ADM [11] VIM [13] NIM 

0.1 0.05 1.94 E-07 1.87 E-08 2.05E-08 

 
0.1 3.87 E-07 3.75 E-08 4.93E-08 

 
1 3.88 E-06 3.75 E-07 7.10E-07 

0.5 0.05 1.94 E-07 1.87 E-08 3.33E-09 

 
0.1 3.87 E-07 3.75 E-08 1.82E-08 

 
1 3.88 E-06 3.75 E-07 6.57E-07 

0.9 0.05 1.94 E-07 1.87 E-08 2.01E-08 

 
0.1 3.87 E-07 3.75 E-08 4.89E-08 

 
1 3.88 E-06 3.75 E-07 7.10E-07 

 

Table 2. Absolute error between MNIM and ADM (α = 1, γ = 0.001, β = 0, δ = 1, dt = 0.0001)  

 

α = 1 β = 0 γ = 0.001 δ = 1, dt = 0.0001 

x  t Adomian [11] NIM 

0.1 0.5 6.34E-08 6.20E-11 

 
1 2.03E-06 3.10E-11 

 
2 6.43E-05 2.19E-10 

0.5 0.5 5.67E-08 6.20E-11 

 
1 1.85E-06 3.10E-11 

 
2 6.07E-05 2.19E-10 

0.9 0.5 4.13E-08 6.20E-11 

 
1 1.38E-06 3.10E-11 

 
2 4.75E-05 2.19E-10 

 

Table 3. Absolute error between MNIM and ADM (α = 0.001, γ = 0.001, β = 0.001, δ = 1, dt = 0.0001) 

 

α = 0.001 β = 0.001 γ = 0.001 δ = 1, dt = 0.0001 

x  t Adomian [11]  NIM 

0.1 0.005 9.69E-06 5.70E-12 

 
0.001 1.94E-06 6.70E-12 

 
0.01 1.94E-05 5.60E-12 

0.5 0.005 9.69E-06 4.60E-12 

 
0.001 1.94E-06 6.60E-12 

 
0.01 1.94E-05 2.10E-12 

0.9 0.005 9.69E-06 5.50E-12 

 
0.001 1.94E-06 6.65E-12 

 
0.01 1.94E-05 5.20E-12 
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Table 4. Absolute error between MNIM and DQM (α = 1, γ = 0.001, β = 1, δ = 1, dt = 0.0001) 

 

α = 1 β = 1 γ = 0.001 δ = 1, dt = 0.0001 

x  t DQM [14] NIM 

X3 0.2 6.84E-09 1.08E-07 

 
0.6 7.73E-09 4.03E-07 

 
0.8 7.75E-09 5.51E-07 

X7 0.2 3.64E-08 7.34E-08 

 
0.6 4.23E-08 3.60E-07 

 
0.8 4.24E-08 5.10E-07 

X13 0.2 1.42E-08 9.53E-08 

 
0.6 1.62E-08 3.86E-07 

 
0.8 1.62E-08 5.37E-07 

 
Table 5. Absolute error between MNIM and DQM (α = 0.1, γ = 0.0001, β = 0.001, δ = 1, dt = 0.0001)  

 

x  t DQM [14] NIM 

X3 0.3 2.32E-09 1.22E-08 

 
0.5 2.41E-09 2.67E-08 

 
0.9 2.43E-09 5.67E-08 

X7 0.3 6.58E-09 7.37E-09 

 
0.5 6.90E-09 2.17E-08 

 
0.9 6.95E-09 5.16E-08 

X13 0.3 3.70E-09 1.02E-08 

 
0.5 3.86E-09 2.47E-08 

 
0.9 3.88E-09 5.46E-08 

For comparison, all the parameters are kept same as in the mentioned references. It is clearly seen 

from the tables listed above that MNIM is able to approximate the solution with high accuracy, as 

compared to ADM and VIM. However, there is slightly higher error in NIM with respect to DQM, but 

the development process as well as implementation of NIM is quite simple and straightforward as 

compared to DQM. 

5     Conclusion  
 
In the present work, modified NIM has been developed for the Burgers-Huxley equation. The 

consistency of the scheme has been shown by comparing the solutions obtained by the present scheme 

with the analytical solutions for various parameters. It can be seen that the developed scheme gives 

more accurate solution with coarse grid. Moreover, comparison of the present scheme have been 

carried out using ADM, VIM, and DQM. It is observed that NIM is significantly more accurate than 

the methods used earlier to solve these equations. However, DQM is a bit more accurate, but it is 

significantly more complex in development as well as implementation. Moreover, this scheme can be 

further sped up by using appropriate preconditioner and more accuracy can be achieved by use of 

different approximation for nonlinear source term of the equation. 
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