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Abstract: The purpose of this study is to develop an accurate and efficient CFD 

code that can be used in hypersonic flows. The flow analysis is based on the three 

dimensional Navier-Stokes equations. These equations are solved by using 
Newton/Newton-Gmres method. The analytical method is used to calculate the 

Jacobian matrix. Flow parameters and convective heat transfer are analyzed on 

Apollo AS-202 Command Module. Also, algebraic Baldwin-Lomax turbulence 

model and one-equation Spalart-Allmaras turbulence model is used to analyze 
hypersonic turbulent flow.  
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1 Introduction  

HYPERSONIC flow became a popular research area about 60 years ago after the military and 

aerospace industries recognized the importance of the field for various interests. The computational 

fluid dynamics (CFD) certainly was one of the key points in the success of many past space programs. 
Design engineers should use the best possible CFD tools for lasting development and this is important 

for success of the aerospace industry. Two different  research fields have gained importance within 

the CFD community over time. One of them is the advancement of upwind schemes, which focuses 
especially on the mathematical point of view, and the other one is turbulence modeling. The 

turbulence is one of the most complex issues of classical physics, and it is also a  special field of 

hypersonic.[1]  Turbulence modeling plays a significant role in computations for hypersonic flow. 
Because turbulent flows are present in most of the hypersonic applications, it is often essential to use 

a turbulence model while modeling the flow. [2].  

 

      The hypersonic conditions are difficult to produce in an experimental facility. The cost of 
experiments of hypersonic flows is higher than low speed flows. Because flight conditions include 

immense amount of energy and the number of facilities that perform such experiments is not so much. 

CFD can reduce the number of experiments and it has been used as a design tool of entry capsules in 
the past two decades. More physical processes can be simulated with the increasing  in computing 

power.[3] One of the critical problems that is faced at designing a reentry vehicle is the exact 

definition of high convective heat fluxes (aerodynamic heating) to the vehicle surface during 

hypersonic flight. Analysis of parameters of flow and heat transfer of a reentry vehicle may be made 
with the  numerical integration of the Navier-Stokes equations in a dense atmosphere, where the 

assumption of continuity of gas medium is true. While the complexity of problems are increasing, 

comparison of computed results with experimental data carries great importance and success of these 
computed results is related with employed physical models and numerical techniques. [4] 
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      Turbulence is important  to determine the aerodynamic forces and heating for hypersonic vehicles. 

However, obtaining experimental data is difficult for turbulence model validation. There are only few 
flight tests in the literature, and these tests generally don’t provide enough data. There are a number of  

ground-based wind tunnel hypersonic flow tests on small scaled geometries. These tests generally 

provide much more data relatively. However, the hypersonic ground tests commonly do not match the 

same total enthalpy and low free stream turbulence due to the very  high velocities. Hence the 
verification of turbulence models with wind tunnel data generally includes extrapolation to flight 

enthalpies. Because of these difficulties in obtaining validation data, designers relies on computational 

fluid dynamics and the models for important issues such as turbulence, chemistry, ablation, etc. [5] 
 

      The models we use are algebraic Baldwin-Lomax and one-equation Spalart-Allmaras turbulence 

models. Baldwin-Lomax and Spalart-Allmaras turbulence models are used to model turbulent flow. 
Baldwin-Lomax model is an algebraic turbulence model and a form of the outer eddy viscosity that 

did not need knowledge of the conditions at the edge of the boundary layer was developed. [6] 

Spalart-Allmaras model is basically a transport equation for the eddy viscosity. It has proven to be 

numerically robust model, and generally gives good results for a wide variety of flows. [7] 
 

 

2 Problem Statement 

One of the objectives of this study is to develop a reliable and robust analysis code for hypersonic 

flows. The flow analysis is based on the axisymmetric Navier-Stokes equations. These equations are 
solved simultaneously by using Newton/Newton-Gmres method. Newton’s method needs  the 

Jacobian matrix which is the derivative of a residual vector with respect to a flow variable vector. In 

this study, analytical differentiation is used to evaluate the Jacobian matrix. The sparse Jacobian 
matrix is LU factorized and the solution is executed by using UMFPACK sparse matrix solver. 

Numerical integration of the Navier-Stokes equations is used for analyzing flow parameters and 

convective heat transfer. Lastly, the turbulence effects are examined in hypersonic flow. Three 

dimensional, compressible and steady-state Navier-Stokes equations can be written in generalized 
coordinate system as shown below. 
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      R is defined as residual vector. Flow variable vector, 
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      Inviscid flux vectors, 
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      Jacobian matrix that is used for coordinate transformation, 
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are defined as shown above. Here, ρ  is density,  u,  v and w are velocity components, p is pressure, et 

is total energy in per unit volume, U, V and W are contravariant velocity components.  Contravariant 

velocity components is defined as shown below. 
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      Equations can be written for viscous flux vectors as below. 
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      Here, shear stress, 
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      heat flux, 
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is defined as shown. In equations above M, Re and Pr parameters show Mach, Reynolds and Prandtl 

numbers in order.  Pressure value is obtained by using ideal gas equations.  
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      In this study, AS-202 module of Apollo reentry vehicle is taken as model and shown in figure-1. 

 

Figure 1: Dimension and solid model of Apollo AS-202 Command Module 



  
 

      Generated grid to analyze flow for Apollo AS-202 Command Module is seen below.  The grid has 

half domain because of the code is axisymmetrical. 

        

Figure-2: Grid for Apollo AS-202 Command Module  

     Hypersonic solver is also ran for   ‘Atmospheric Reentry Demonstrator (ARD)’ geometry  which is 

made by European Space Agency (ESA) for first re-entry mission. Geometry of ARD [8] and three 

dimensional grid of it can bee seen below.      

    
Figure 3: Geometry of ARD  and 2 dimensional view of its grid. 

 

    
Figure 4: Grid distribution and 3-D view of grid on ARD (72x48x18)  

 

 

      The system of non-linear discretized governing equations can be written in the form: 
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where R̂  is the residual vector and is defined as 
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      Expanding ˆ(W)R in a Taylor series about (n)
th

 iteration
 
and discarding high order (or nonlinear) 

terms yields : 
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method as: 
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      The new values of flow variable vector Ŵ  at the (n+1)
th
 iteration can be calculated as: 
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In the solution of Euler equations with Newton’s method, the evaluation of the flux Jacobian 

matrix is needed. The entries of Jacobian matrix are the derivatives of the residual vector with respect 
to the flow variables vector. In the calculation of these derivatives a finite difference method or 

analytical derivation method can be used, and the resulting matrices are called numerical or analytical 

Jacobians, respectively.  
 

3      Results  

In figure-5, computational normalized pressure values are compared with experimental values along 

half nose of  body when Mach  number is 10.18 and angle of attack  is 0°. Here, S is length of nose 
surface and Rb is body radius.[9] As it is seen in figure, computational result is verified with the 

experiment.  



 

 

Figure 5:  Comparison of the computational and experimental  normalized pressure values along the    

body nose for the Apollo Command Module ( Mach number = 10.18, flow angle = 0° ) 

 

      In figure-6, computational normalized heat flux values are compared with experimental values 

along half nose of  body when Mach  number is 10.18 and angle of attack  is 0°. Here, it can be seen 
that computational results don’t match well with the experimental results and study on verification of 

code continues. 
 

 

Figure 6:  Comparison of the computational and experimental  normalized heat flux values along the    

body nose for the Apollo Command Module ( Mach number = 10.18, flow angle = 0° ) 

 

       



      The Baldwin-Lomax turbulence model was implemented to the code and flow is examined  when 

Mach  number is 10 and angle between flow direction  and x-axis is -30°. Mach number and  pressure 
distributions around Apollo are seen in figure-7.  

 

Figure 7:  Mach number and pressure distributions around Apollo AS-202 

( Mach number = 10, flow angle= -30° ) 

 

      Density and entropy distributions around  Apollo AS-202 can be seen below.  

 

Figure 8:  Density and entropy distributions around Apollo AS-202 

( Mach number = 10, flow angle= -30° ) 

 

      Numerical values on figures are normalized.  In figure-9,  taking account of real values, it is 

understood that the maximum  temperature  on nose region is very high from what they should be. 

The reason for that is using ideal gas equations and not to be included  chemical reaction effects in the 
code. 

       The temperature distributions and velocity vectors around vehicle are seen in  figure-9.  



 

Figure 9: Temperature distributions and velocity vectors around Apollo AS-202 

( Mach number = 10, flow angle= -30° ) 

 

      Here, a high temperature region  on the vehicle attracts attention and  it is thought that the reason  

is occurring of stagnation point at that region. Additionally,  it is noticed that velocity vectors are 
distributed properly with physics of boundary layer.  

      The results of  flow analysis which Mach  number  is 10.18  and angle between flow direction  and 
x-axis is 0° are shown in figure-10,11 and 12.  

 

Figure 10:  Mach number and pressure distributions around Apollo AS-202 

( Mach number = 10.18, flow angle= 0° ) 

 

 

Figure 11:  Density and entropy distributions around Apollo AS-202 

( Mach number = 10.18, flow angle= 0° ) 



 

Figure 12: Temperature distributions  around Apollo AS-202 

( Mach number = 10.18, flow angle= 0° ) 

      The Baldwin-Lomax turbulence model was implemented to the code and flow around ARD 

vehicle is examined  when Mach  number is 10 and angle between flow direction  and x-axis is -20°. 

Some obtained results are seen in figure-13,14 and 15. Numerical values on figures are normalized. 

 

 
Figure 13:  Mach number and pressure distributions around ARD 

(Mach number=10, flow angle= -20°) 

 

 
Figure 14: Density and entropy distributions around ARD 

(Mach number=10, flow angle= -20°) 

 



 
Figure 15: Temperature distributions  and velocity vectors around Apollo AS-202 

(Mach number=10, flow angle= -20°) 

 

     Flux vectors and streamlines at behind of ARD  when angle of attack is -20° can be seen below. 

Vorticity appears at the top region after flow seperated from the geometry.   

       

 
Figure 16: Flux vectors at the back region of ARD  

(Mach number =10, flow angle = -20°) 



 
Figure 17: Streamlines at the back region of ARD  

(Mach number =10, flow angle = -20°) 

 

The Baldwin-Lomax turbulence model was implemented to the code and flow around ARD vehicle is 

examined  when Mach  number is 10 and angle between flow direction  and x-axis is 0°. Some 

obtained results are seen in figure-18,19 and 20. Numerical values on figures are normalized. 

 

 

  
Figure 18: Mach number and pressure distributions around ARD 

(Mach number=10, flow angle= 0°) 



  
Figure 19: Density and entropy distributions around ARD 

(Mach number=10, flow angle= 0°) 

  
Figure 20: Temperature distributions  and velocity vectors around Apollo AS-202 

(Mach number=10, flow angle= 0°) 

 

      Streamlines and vorticity region at behind of ARD when angle of attack is 0° is seen in figure-21.   

 

  
Figure 21: Streamlines and vorticity region around ARD 

(Mach number =10, flow angle = 0°) 

 

When results are inspected, it is seen that distributions of variables around ARD are generally like 

they are desired.  



3      Conclusion and Future Work  

The Navier-Stokes equations are solved with the Newton/Newton-Gmres method. The flow 
parameters are analyzed and convective heat transfer is studied on Apollo AS-202 Command Module. 

In the hypersonic turbulent flow analyze Baldwin-Lomax model is used. Additionally, spalart-

allmaras turbulence model will be implemented to the flow solver and similar results will be observed 
and compared. 
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