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Abstract: This research is devoted to the numerical investigation of the transition and multi-
plicity phenomena in natural convection within 2-D cavity. In this study the e�ects of di�erent
parameters such as Prandtl number (Pr), Rayleigh number (Ra), and aspect ratio (AR) are nu-
merically analyzed. Transition and multiple convective �ow patterns are observed using Rayleigh,
boundary condition and pseudo-transient continuation methods. In boundary condition contin-
uation method, the various temperature continuation methods are used as the initial values on
boundaries. Combination of continuation methods result in observing di�erent convective �ow
patterns.
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1 Introduction

In recent years, natural convection received considerable interest in various �elds such as new electronic
devices, solar thermal receiver systems, solidi�cation process and biomedical. The natural convection problem
reveals a variety of complex behaviors and high sensitivity to small di�erence of parameters such as the aspect
ratio (AR), Rayleigh number (Ra), Prandtl number (Pr), and the thermal boundary conditions (TBC).
The large body of literature available on natural convection was organized according to the parametric
investigation to observe oscillatory and bifurcation phenomena.

At speci�c Ra number (bifurcation point), the transition from conduction (Nu=1) to convection (onset
of convective instability) occurs. The �rst observations of transition and unstable natural convection phe-
nomenon happened in experimental researches [1, 2]. The unstable natural convection has been speci�cally
studied in some researches [3, 4, 5] for two dimensional (2D) and three dimensional (3D) cavities. However,
these studies were performed only for variation of Pr numbers. The onset of unstable natural convection
has been analyzed in Gelfagt et al. studies [6, 7]. Their studies focus on onset of instability phenomena
in convective �uid �ow for di�erent AR. They presented the stability diagram for di�erent Ra numbers
and aspect ratio. They proposed that the Prandtl number and the aspect ratio play the signi�cant role in
changing steady to transient natural convection and multiple convective �ow patterns.

The severe e�ects of natural convection on melt �ow have motivated recent studies to examine convective
�ow [8]. Natural convection in melt �ow a�ects the process of crystallization, and it completely a�ects the
interface and crystal formation. It strongly changes the solute and temperature distribution within the melt
�ow [2].

A recent approach which studied the natural convection by using ISPH method was introduced by Danis
et al [9]. ISPH method is used to simulate transient and laminar natural convection in a square cavity with
Boussinesq approximation in speci�c rang of Rayleigh numbers 103 and 106. Despite the fact that the SPH is

1



always used to discretize the Lagrangian equations, in this study the uniform Eulerian grids is discretized by
using SPH operators. In other meshless Lagrangian method the SPH particles are moving inside the domain,
but in this approach SPH particles are kept stationary. Since all particles are stationary, the Eulerian form
of governing equations is used instead of the Lagrangian form of governing equations. In addition, they used
an incompressible approach which is called Incompressible SPH (ISPH). Moreover, ISPH method was used
to prevent the density error accumulation and particle disordering. In this method, the incompressibility is
directly imposed an intermediate velocity �eld which is obtained without considering gradient of pressure.

Multiple convective �ow patterns were investigated by Puigjaner et al. [10]. All stable and unstable �ow
patterns for Rayleigh-Benard convection problem with Pr=0.7 at di�erent Ra numbers were analyzed by
using parameter continuation techniques. Multiple convection �ow patterns were observed even for moderate
Ra numbers. The di�erent patterns were discussed by streamlines direction and number of convection rolls
and its di�erent shapes.

Stochastic analysis by using random initial values for Rayleigh number is performed by D. Ventury et
al. [11]. In his study, deterministic analysis was performed to capture steady-state solutions and primary
bifurcations. In steady states problem the multiple stable solution found within speci�c ranges of Rayleigh
number. Finally, the stochastic analysis were carried out random initial condition �ows around bifurcation
points to analysis the transient natural convection behavior.

Sheu et al. [12] discussed the transient convection and the onset of bifurcation point. They have studied
the multiplicity phenomena in a three dimensional (3D) model which is numerically demonstrated that a
unique symmetric and steady-state solution exist in small Rayleigh number (Ra). As the Rayleigh number
was increased beyond onset of bifurcation point, the symmetric results became asymmetric, and from one
point (bifurcation point) obtained two di�erent solutions.

Various numerical studies have been performed on the instability of steady and transient natural convec-
tive �ows. Mercader et al. [13] studied the parametric variation, BC, and periodic analysis. Firstly, they
analyzed the basic state and its primary bifurcation that has two cases of temperature BCs, which are per-
formed in horizontal plates with Pr= 0.007 with rectangular cavity of AR=2. Furthermore, periodic analysis
was considered in their research, in which they studied both steady and transient convective �ow. Finally, it
was observed that by increasing thermal e�ects, secondary bifurcations revealed for both temperature pro�le
cases.

The oscillatory convection within the liquid phase of two-phase �ow was observed [1, 2], and some
numerical and experimental studies[6, 14] investigated the oscillatory natural convection. Although these
studies identify the phenomenon, a complete analysis that can cover the bifurcation points and multiple
results is still lacking. In addition, It was mentioned that at critical Ra number, the transition and oscillatory
natural convection intensively a�ect the �uid �ow within closed domain. Joo-Sik Yoo [15] studied the
combined e�ect of thermal and hydrodynamic instability natural convection in a narrow horizontal concentric
annulus with Pr=0.4. The multiple natural convection patterns were shown in his investigation within
annular gap between two concentric cylinder. The results represented the complicated multicellular �ow.
Increasing Ra number changes the multicellular �ow to a nearly monocellular structure. Periodic steady
solutions were observed within higher range of Ra numbers.

According to the literature, it is still uncertain why crystal growth of some materials is easy and for
others it is not [14, 16]. It has been neglected that at the low Pr numbers (Pr < 0.1), the oscillatory natural
convection �ow occurs at the range of Ra numbers which are so close to the experimental conditions [16].
The strength of �uid �ow and the unstable transition natural convection can strongly change the interface
of two-phase �ow. The e�ects of multiplicity and transition of natural convection has been neglected to
estimate the shape and movement of the solid/liquid interface of two-phase �ow [14]. The e�ects of BC and
specially temperature gradient are investigated by Erenburg et al. [17]. Partially heated walls are set up
as boundary condition to analyze the multiplicity and bifurcations of natural convection. In this research,
both continuous and partial temperature gradient on wall are considered. Selver et al.[14] studied the partial
heated vertical walls to simulate the �oating-zone crystal growth.

Most of the studies, which discuss oscillatory convection, were considered the thermocapillary e�ects for
upper BC on �uid �ow[18]. The buoyancy force is the dominant force to carry out the natural convection
in closed domain; however, the in�uence of thermocapillary forces on buoyancy-driven convection cannot
be ignored. This in�uences were numerically studied for open cavities with di�erentially heated walls[19].
In these studies the Reynolds number (Re) is also important because they used the Marangoni stress to
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solve the stress-free (open) BC. Thermocapillary can impose intensive e�ects on buoyancy-driven �ow. The
results of combination of these two forces can completely change the stability of natural convection within
the domain.

Some studies used the thermal lattice Boltzmann method to study the natural convection [20, 21, 22].
In this method, instead of using �nite di�erence, �nite element and �nite volume methods to solve Naiver -
Stokes equations, the lattice Boltzmann method were employed. In addition, there are some new combina-
tions of lattice Boltzmann method with other methods to create new explicit method [23], which is based on
the lattice Boltzmann method (LBM) combined with Taylor series expansion and the least squares approach.

Most of natural convection studies were used Boussinesq approximation to simulate the convective �ow.
However, there are several studies which used non-Boussinesq assumption to model convective �ow, Hamimid
et al.[24] was used the time dependent Naiver - Stokes equations under the Low Mach Number approximation
(LMN method). This investigation demonstrated that for large temperature di�erences, LMN compressible
method obtained better results for convective �ow. In addition, Vekstein (2004) [25] investigated natural
convection without using Boussinesq approximation, considered the energy of liquid and gas to investigate
the onset of convective instability. In this study, the onset of natural convection instability is discussed by
energy of the �uid. In other words, a gravitational energy sustains the �uid �ow in natural convection by
interchanging a hotter �uid with less density to cooler one with more density. The distinguish convection
instability between �uid and ideal gas was also discussed in this research. Unlike a gas, a liquid may be
considered as almost incompressible �uid. This means that its density, in the general case, is a function of
pressure and temperature ρ = ρ(P, T ). But since it has a very weak dependence on the pressure, one may
simply consider ρ = ρ(T ).

Szewc et al. [26] discussed the Boussinesq approximation failure by using SPH method, in which natural
convection in a square cavity with a Boussinesq and a non-Boussinesq formulation was studied. In signi�cant
di�erences of density due to temperature gradient, the dimensionless Gay-Lussac number is suggested to
measure density gradient in non-isothermal �ows. The e�ect of Gay-Lussac number was investigated for
velocity �eld and Nusselt number of non-Boussinesq convective �ow on their study.

When both heat and mass transfer a�ect natural convection, the double-di�usive convective �ow is
de�ned to solve the problem [27]. For multi-component mixing �ows, the transport of enthalpy, due to
species di�usion, can have a signi�cant e�ect on the enthalpy �eld and should not be neglected. Lewis
number (Le = k

ρcpD
) is very important in these kinds of investigation; when the Le number for any species

Le� 1 increase, the thermo-solutal e�ects become so signi�cant to simulate the convective �ow[28].
The e�ects of rotating �ow on oscillatory natural convection was studied experimentally and numerically

[29, 30, 31] . For speci�c range of Gr numbers, thermal oscillations are detected at several rotation rate. In
addition, it is found that the frequency of oscillation is a function of the Gr number.

Di�erent parametric studies were carried on to investigate the natural convection and �nd the bifurcation
points [6, 32]. Although these studies identify the phenomenon, a study that can cover all parameters which
are a�ect the transition natural convection is still lacking.

2 Problem Statement

The �uid motion with temperature e�ects results in governing equations in which natural convection plays
a major role by buoyancy forces, and the buoyancy forces sustain the �uid �ow. The �uid is assumed
Newtonian and quasi-incompressible (Boussinesq approximation), and the Navier-Stokes equations coupled
with the energy equation govern the �ow with the constant physical properties except in the buoyancy term
where ρ is taken as a linear function of the temperature. Despite the fact that there is a density di�erences
within the domain, by the Boussinesq approximation , the density is assumed to be constant except for the
body forces. The dimensionless form of equations for conservation of mass, momentum, and energy can be
written as following [23, 33]:
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In the above equations u∗, v∗, t∗, p∗andT ∗ represent the dimensionless velocity, time, pressure and tem-
perature, respectively, and the following non-dimensionalizations were de�ned x∗ = x/L; y∗ = y/L; u∗ =
uL/α; v∗ = vL/α; t∗ = tα

L ; p∗ = pL2/ρα2;T ∗ = (T − T0)/∆T ;Pr = ν/α and Ra = gβT∆TL3/να, where t,
p, T, ν, α and βT denote the dimensional time, dimensional pressure, dimensional temperature, viscosity,
thermal di�usivity and the coe�cient of thermal expansion, respectively. The importance of buoyancy forces
in a mixed convection �ow can be measured by the ratio of the Grashof and Reynolds numbers.

Gr

Re2
=
gβ∆TL

ν2
(5)

When this ratio exceeds unity, the buoyancy e�ect is dominant, and the natural convection is occurred.
Conversely, if it is very small, buoyancy forces is weak and can be ignored. In pure natural convection, the
strength of the buoyancy-induced �ow is measured by the Ra number.

Rayleigh-Benard convection is an example of thermal instability where temperature di�erence between
the top and bottom caused by heating the �uid from below results in formation of rolls. If the temperature
gradient, density gradient, was large enough, the gravitational forces will dominate and instability will
occur. Rayleigh-Benard instability has been a topic for many experimental and numerical studies [34].
The Rayleigh-Benard instability develops when Ra number is above a critical value. The e�ect of domain
geometry is analysed by AR, which is actually the ratio of height to length (AR=H/L). Di�erent aspect
ratio( AR=1/4, 1/2, 1, 2, and 4) are considered in this research. The problem is de�ned using constant
temperature at the top and the bottom. Insolated BC is de�ned on sidewalls.

To examine the mesh sensitivity, the average mesh size, h, is de�ned to represent cell mesh size. Di�erent
rectangular meshes (h=1, 0.5, 0.25,...) are used to investigate the e�ect of mesh re�nement. Simulations
are performed to obtain velocity magnitude and temperature contours at critical Ra number and critical
positions (half-width, half-height and diagonal lines). The mesh size of h=1 is selected as a coarse mesh
and then in every re�nement step it is divided by two as the �ner mesh. Mesh sensitivity analysis is carried
out in AR=2, Ra = 1 × 105 and Pr=1 since these values are the most critical ones. The no-slip velocity
boundary condition on walls results in zero velocity on walls. In addition, the velocity magnitude values are
mostly constant for half-width line. Therefore, the half-height and diagonal lines of domain are selected to
compare the velocity magnitude values.

Velocity magnitude at half-height and on diagonal line are plotted for di�erent mesh sizes as shown in
Figure 1 (a) and (b). By comparing the results, one can notice that the shape of velocity magnitudes are
the same for di�erent mesh sizes but the amplitude of them varies for the �rst three mesh sizes. There is no
signi�cant change in results when the mesh is re�ned further after h=0.25.

3 Results and Discussion

The results of transition and multiplicity phenomena on di�erent cases are represented in two separate
section. First part of the results is devoted to the parametric investigation of Rayleigh-Benard Instability
to show the transition natural convection for di�erent parameters. The continuation methods, which are
used in this research, play fundamental role to follow the results path to show the transition phenomenon
in this section. In second part, multiple convective �ow is shown and compared with literatures. The BC
continuation method helps to obtain multiple convective patterns. Indeed, the BC and Ra continuation
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Figure 1: Velocity magnitude for AR=2, Ra = 1 × 105 and Pr=1 for di�erent mesh sizes; a) in x-direction
at half-height; b) on the diagonal of the domain.
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methods support to follow the various path of �ow patterns after bifurcation points. The Ra continuation
is a useful method to �nd critical Ra numbers and bifurcation points. At critical or high Ra numbers which
the convergence of equation is not satis�ed, continuation methods are used to obtain the stable results.

3.1 Parametric analyse and transition phenomenon

In this section, a parametric analyse for various Ra, Pr and AR is carried out. In every case, the BC
continuation method is utilized as initial value on vertical walls. The Rayleigh-Benard instability develops
when Ra number is above a critical value. Substantial number of cases were analyzed however �ve cases
with AR=2 and Ra = 2× 105 were selected to represent the phenomenon as shown in Table 1. For all cases,
the Nu number is bigger than 1 and convection heat transfer is dominant. By decreasing the Pr number
from 10 to 0.1, the velocity magnitude, which is the mean value of velocity magnitude within the domain, is
increased except for Pr=0.5 (Figure 2 (a)) in which the transition phenomenon is happened and two kidney
shape velocity cells are changed to four velocity cells. In transition period between Pr=0.5 and Pr=1, the
velocity magnitude is increased severely which is shown in Figure 3. It can be concluded that the critical
Ra number increases with decreasing Pr number. Indeed, the bifurcation point for transition from two-rolls
to four-rolls for low Pr numbers(lower than one) occurs at low Ra number values in these cases as shown in
Figure 2. The higher velocity values are obtained for the cases which are in critical Ra number region.

Pr Velocity magnitude Nusselt
0.1 0.00222 2.23
0.5 0.00176 3.43
1 0.00325 8.07
5 0.000835 12.647
10 0.000418 12.665

Table 1: Parametric analysis for a range of Pr numbers between 0.1 and 10 at constant Ra = 2 × 105 and
AR = 2 ; maximum value of the Nu number and velocity magnitude is obtained for each case.

The results show that by increasing the Pr number, Nu number increase in a non-linear manner as shown
in Figure 2 (b). The increase Nu can be described in two stages: at the �rst stage (0.1 < Pr < 5), it increases
drastically. This region is indeed the transition region from two symmetric velocity cells to four symmetric
velocity cells, and the slope of Nu-Pr graph is high. The second stage (5 < Pr < 10) is more like a plateau
at which the increase in Nu number is negligible compared to the increase in Pr number.
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Figure 2: Plots showing the variation of velocity magnitude and Nu number with respect to constant Ra
number and AR (Ra = 2 × 105 and AR = 2); a) Pr-velocity magnitude; b) Pr-Nu.
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Figure 3: Temperature contours (right) and velocity vectors (left) at constant Ra = 2× 105 and AR = 2; a)
Pr=1; b) Pr=0.5.
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3.2 Multiplicity

A combination of thermal and hydrodynamic e�ects yield complex multiple �ow patterns which are obtain the
di�erent patterns at the completely same problem setting. Although, Puigjaner et al. (2004) [10] and Venturi
et al.(2010) [11] were investigated the multiple convective patterns. This study reperesent some important
multiple patterns within the critical Ra number range which are not obtained in previous studies. The
one-roll convection pattern was obtained by Venturi [11] in both directions (clockwise and counterclockwise)
as shown in Figure 4(a). In present study, the transition phenomenon is observed at the range of Ra number
between Ra = 2500 to Ra = 3000 and the one convection cell in both directions is shown in Figure 5 (a) and
(b). The more accurate results are obtained because of continuation methods and better mesh generation.
The two-cell convection patterns in two di�erent direction are obtained in Figure 6. Venturi et al. [11]
observed the secondary branch point as shown in Figure 4(b). This is in agreement with the results obtained
in present study.

In this investigation, the third bifurcation point is happened at Ra = 4 × 104 as shown in Figure 7 (a)
and (b) in both directions. Two small cells appear at top corners (Figure 7 (a)) or at bottom corners (Figure
7 (b)). The three-cell result obtained by Venturi et al. [11] at Ra=21000 can be explained as an unstable
result which is shown in Figure 4 (c). The results in the present study are stable as shown in Figure 7 (a)
and (b). By increasing Ra to Ra = 8× 104, four symmetric stable cells appear as illustrated in Figure 7 (c).
The probability of appearence of two small cells at the top or the bottom during the transition period are
same. This observation can be considered as another form of multiplicity in convective �ow which has not
considered in previous studies.

Figure 4: Velocity streamlines (�rst row) and temperature contours (second row) which are obtained by
Venturi et al. (2010) [11]; a) one-roll convection pattern de�ned as clockwise roll and counterclockwise roll
at Ra = 5000 ; b) two-roll at Ra=15000 ; c) three-roll convection pattern at Ra=21000.
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Figure 5: Velocity magnitude vectors and temperature contours AR=1, Ra=5000 and Pr=0.7 ; a) counter-
clockwise ; b) clockwise .

Figure 6: Velocity magnitude vectors and temperature contours for AR=1, Ra = 1×104 and Pr=0.7; two-roll
convection pattern in opposite directions.
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Figure 7: Velocity magnitude vectors and temperature contours; a) and b) four-roll stable patterns in
opposite directions Ra = 4 × 104; c) four symmetric stable cells at Ra = 8 × 104.

Figure 8 shows the two unstable convection cells which represent a di�erent �ow pattern in transition
period between two cells to four cells.

Figure 8: a) Unstable pattern of velocity stream-function; b) Temperature contours.

4 Conclusion and Future Work

In this study, the transition and multiple results phenomena for natural convection are investigated. The
BC and Ra continuation methods are implemented to obtain transition and multiple results. A parametric
analysis at di�erent Pr numbers is carried out for constant Ra = 2×105 and AR = 2. The outcome reveals a
critical Ra numbers for which transition phenomenon occurs. According to the results, by decreasing the Pr
number from 10 to 0.1, the velocity magnitude is increased except for Pr=0.5 in which the two kidney shape
velocity cells are divided to four velocity cells that leads to a decrease in the velocity magnitude. It can also
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be concluded that the critical Ra number increases with decreasing Pr number. Indeed, the bifurcation point
for transition from two-rolls to four-rolls for low Pr numbers(lower than one) occurs at low Ra number values
in these cases as shown in Figure 3. In all of the cases, behavior of convective �ow changes signi�cantly
within the transition region. This can be explained by energy balance within the enclosure as studied in
experimental research by Mishra et al. [34].

Multiple convection �ow patterns are obtained. The multiple results are presented in three form: the
direction of velocity streamline vectors, the number of cells and shape of convection �ow patterns. The
transition between multiple results for the same parameters shows that one unstable result can be converted
to other result.

The results in this research provide new areas of study for future works. A similar study can be in-
vestigated for the double-di�usive problem. The e�ects of transition and multiplicity phenomenon in mass
concentration for pure �ow or multi-component mixing �ows can be considered as future work. In addition,
considering the e�ects of transition natural convection on various new application such as new electronic
devices, solar thermal receiver systems, solidi�cation process, this study can be received considerable interest
in various applications.
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