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Abstract: The moving-coordinate method presented by the authors is a methodology 

where physical phenomena are observed from the accelerating frame attached to a 

moving body. In this study, the moving-coordinate method is generalized by newly 

including both the translational and rotational motions of the frame. The source terms 

are derived for momentum and energy equations and the transformations of 

momentum and total energy between the inertial frame and the moving frame are 

presented. As the moving body is observed to be stationary in the moving-coordinate 

method, the present method has advantages that there is no regeneration of the grid 

around the object and no calculation error induced by moving grids. The present 

method was applied to supersonic flows around a rectangular parachute model, and 

the results showed the self-excited motions of the model. 
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1     Introduction 
 

Supersonic parachutes are effective aerodynamic decelerators for atmospheric entry vehicles. They 

have been used so many times in the re-entry of planetary probes because of advantages of their high 

drag force with light weight, and simple structure compactly storable. However, they have flexibility 

and there occur the shock-vortex interactions in the complicated flow field, and therefore their 

aerodynamic characteristics and the trajectory of their motion are still incompletely understood.  

      In the wind tunnel experiments with hemispherical and rigid parachute model [1, 2], it is reported 

that the detached shock wave in front of the model vibrates. The vibration tends to occur as the Mach 

number becomes higher. The vibration sometimes occurs after the pressure waves go and return 

between the detached shock wave and the inside of the model, and, even if the vibration once continue, 

the flow phenomena return to quasi-steady states again. The shock-vibration is a distinctive 

phenomenon in the supersonic parachute experiments, but the details of the mechanism have not been 

clarified yet. 

Takakura et al. [3] carried out computations of supersonic flows using high accuracy WENO 

schemes about a rectangular concave body as the parachute model, and reported: when the disturbance 

of Mach number is added to the uniform flow, the feedback phenomenon occurs with vortices and 

pressure waves, where the vortices released from the central part of the detached shock wave are 

advected downstream toward the inside and edge of the concave body, and the pressure waves generated 

1 Present: Graduate School of Tohoku University 
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by the interaction of the vortices with the edge propagates upstream. They mentioned the possibility 

that this feedback may cause the asymmetric vibration of the shock waves. However, these released 

vortices were captured too largely on coarse grid portion at the shock wave, and afterward re-

computations on the grids with high resolution of shock waves were reported [4, 5] in detail about 

generation of the sound waves at the edge of the concave body and the vortex release from the detached 

shock wave. It is indicated that the pressure waves propagate downstream and upstream between the 

bottom of the concave body and the detached shock wave firstly when the disturbance is given. 

Hatanaka, et al. [6] performed three-dimensional numerical computations around a rigid 

hemispherical shell in supersonic flows and reproduced the phenomenon observed in the wind tunnel 

experiments by Kawamura and Mizukaki [2]. They showed that the frequency of the small-scale 

vibration of the detached shock wave can be explained by the cavity resonance based on the distance 

between the bottom of the hemispherical shell and the detached shock wave. 

      In the above researches, the parachute model have been treated as rigid and not in motion, however 

the actual parachute moves around a pivot. As such unsteady self-excited motion makes prediction of 

the moving direction of the object difficult, analysis of self-excited motion and research of numerical 

methods for flow field around a moving object are being conducted. 

Yamakawa and Matsuno [7] applied finite-volume method on an unstructured moving grid to 

compressible flows and showed effectiveness and extensibility of the scheme by computation of the 

piston problem and the gun tunnel problem. Inomoto and Matsuno [8] applied finite-volume method on 

an unstructured moving grid to incompressible flow and showed that the scheme is effective to coupled 

analysis of fluid dynamics and kinematics to reproduce behaviour of a blow ball. 

Flows around a moving body are computed numerically on moving grids in most cases. On the 

contrary, the moving-coordinate method presented by the authors [9] is to fix the coordinate system to 

a moving body, where the moving body stands still with stationary grids. Authors [10] derived moving-

coordinate method systematically from the governing equations of compressible flow in general-

coordinate system, and applied it to numerical computations of the flow field inside the ballistic range 

at launch of the flying object and the flow in the opening operation of high-voltage gas insulated circuit 

breaker. The moving-coordinate method has advantages that it is not necessary to reconstruct the grid 

around an object when the object moves, and there is no calculation error caused by grid movement. 

In [10] the moving frame had only translational velocity relative to the standard inertial frame. Here 

the moving-coordinate method is extended to have the translational and rotational motions. The 

governing equations are derived for the generalized moving-coordinate method, and the present method 

is applied to supersonic flows around a rectangular parachute model. 

 

2     Moving-coordinate method 
 

The moving-coordinate method is a method to observe the flow field from a coordinate system 

attached to the body in motion. Consider a standard-coordinate system I (inertial frame) and a moving-

coordinate system A (accelerating frame) accelerating with regard to it [11], which is carrying out a 

translation with relative velocity V0 and a rotation with angular vector Ω as shown in Fig. 2.1. Let r be 

the position vector for the origin of the accelerating frame in system I, and 𝒙 be the position vector in 

system 𝐴, then fluid velocity 𝒖 at position r+x observed from the standard-coordinate system I and fluid 

velocity 𝒖∗ at position x observed from the moving-coordinate system A have the following relation: 

 

𝒖 − 𝑽𝐺 = 𝒖∗ ,     𝑽𝐺 = 𝑽0 + 𝜴 × 𝒙  

  

𝒖 = 𝒖∗ + 𝑽0 + 𝜴 × 𝒙 (2.1) 
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Figure 2.1:  Moving-coordinate frame (A) with translation and rotation. 

 

In this section, first, we describe the basic fluid equations in Lagrangian notation, and then, we will 

derive those on moving-coordinate frame. In the notation below, 𝜌, 𝐸, 𝑝, 𝑻, 𝒒 are the density, the total 

energy per unit volume, the pressure, the viscous stress tensor, the heat flux vector, respectively. 

 

2.1     Continuity equation 
 

The continuity equation in the standard-coordinate system can be written as follows: 

 

∂𝜌

∂𝑡
+ 𝛁 ∙ (𝜌𝒖) = 0  

  

   
D𝜌

D𝑡
+ 𝜌𝛁 ∙ 𝒖 = 0 (2.2) 

 

Substituting Eq. (2.1) into Eq. (2.2) leads to 

 
D𝜌

D𝑡
+ 𝜌𝛁 ∙ 𝒖∗ + 𝜌𝛁 ∙ 𝑽0 + 𝜌𝛁 ∙ (𝜴 × 𝒙) = 0                  

 

Since 𝜌𝛁 ∙ 𝑽0 = 0  and    𝜌𝛁 ∙ (𝜴 × 𝒙) = 0 , we obtain continuity equation in the moving-coordinate system: 

 

  
D𝜌

D𝑡
+ 𝜌𝛁 ∙ 𝒖∗ = 0 (2.3) 

 

Thus, it was shown that the continuity equation is unchanged between the coordinate systems I and A. 

 

2.2     Equation of motion 
 

The equation of motion in the standard-coordinate system can be written as follows: 

 

𝜌
D𝒖

D𝑡
= −𝛁𝑝 + 𝛁 ∙ 𝑻 (2.4) 

 

In the moving-coordinate system moving with an acceleration to the inertial frame, using the unit 

normal bases, 𝒆1, 𝒆2, 𝒆3, an arbitrary vector 𝒃 is expressed as 

  

𝒃 = 𝑏1𝒆1 + 𝑏2𝒆2 + 𝑏3𝒆3 = 𝑏𝑖𝒆𝑖  

 

The rate of change of 𝒃 observed in the inertial frame is written as follows: 
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[
D𝒃

D𝑡
]
𝐼
=

D𝑏𝑖

D𝑡
𝒆𝑖 + 𝑏𝑖

D𝒆𝑖

D𝑡
,

D𝒆𝑖

D𝑡
=  𝜴 × 𝒆𝑖  

 

Therefore the following relation between the inertial and accelerating frames is derived [11]: 

 

[
D𝒃

D𝑡
]
𝐼
= [

D𝒃

D𝑡
]
𝐴

+ 𝜴 × 𝒃 (2.5) 

 

where subscripts 𝐼  and A denote the inertial frame and the accelerating frame, respectively. 

Differentiating Eq. (2.1) with respect to the inertial frame and using Eq. (2.5) and [D𝒙/D𝑡]𝐴 = 𝒖∗: 

 

[
D𝒖

D𝑡
]
𝐼
= [

D𝒖∗

D𝑡
]
𝐼
+ [

D𝑽0

D𝑡
]
𝐼
+ [

D(𝜴 × 𝒙)

D𝑡
]
𝐼
 (2.6) 

 i.  ii.  

In the right hand side, the first and third terms can be transformed into the accelerating frame by use of 

Eq. (2.5): 

 

i. [
D𝒖∗

D𝑡
]
𝐼
= [

D𝒖∗

D𝑡
]
𝐴

+ 𝜴 × 𝒖∗            

   

ii. [
D(𝜴 × 𝒙)

D𝑡
]
𝐼

= [
D(𝜴 × 𝒙)

D𝑡
]
𝐴

+ 𝜴 × (𝜴 × 𝒙)  

                                   = 𝜴 × [
D𝒙

D𝑡
]
𝐴

+ [
D𝜴

D𝑡
]
𝐴

× 𝒙 + 𝜴 × (𝜴 × 𝒙)  

                            = 𝜴 × 𝒖∗ + [
D𝜴

D𝑡
]
𝐴

× 𝒙 + 𝜴 × (𝜴 × 𝒙)  

 

Thus Eq. (2.6) is expressed as: 

 

   [
D𝒖

D𝑡
]
𝐼
= [

D𝒖∗

D𝑡
]
𝐴

+
d𝑽0

d𝑡
+ 2(𝜴 × 𝒖∗) + 𝜴 × (𝜴 × 𝒙) +

d𝜴

d𝑡
× 𝒙 (2.7) 

 

Substituting Eq. (2.7) into Eq. (2.4) and rearranging it, we can obtain equation of motion in the moving-

coordinate system [11]: 

 

𝜌 [
D𝒖∗

D𝑡
]
𝐴

= (−𝛁𝑝 + 𝛁 ∙ 𝑻) − 𝜌{
d𝑽0

d𝑡
+ 2(𝜴 × 𝒖∗) + 𝜴 × (𝜴 × 𝒙) +

d𝜴

d𝑡
× 𝒙} (2.8) 

 

translational 

acceleration 

Corioli’s 

force 

centrifugal 

force 

unsteady 

term 

 

2.3     Energy equation 
 

The Energy equation in the standard-coordinate system is written as follows: 

 

𝜌
D(𝐸/𝜌)

D𝑡
= −𝛁 ∙ (𝑝𝒖) + 𝛁 ∙ (𝑻 ∙ 𝒖) − 𝛁 ∙ 𝒒 (2.9) 

 iii.  

 

Now we describe the total energy 𝐸 in the standard-coordinate system by using the total energy 𝐸∗ in 
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the moving-coordinate system: 

 

𝐸 =
𝑝

𝛾 − 1
+

1

2
𝜌𝒖 ∙ 𝒖 (2.10) 

  

  𝐸∗ =
𝑝

𝛾 − 1
+

1

2
𝜌𝒖∗ ∙ 𝒖∗ (2.11) 

 

By substituting Eq. (2.1) for Eq. (2.10) 

 

𝐸 =
𝑝

𝛾 − 1
+

1

2
𝜌(𝒖∗ + 𝑽0 + 𝜴 × 𝒙) ∙ (𝒖∗ + 𝑽0 + 𝜴 × 𝒙)  

 

and further by using Eq. (2.1), the following equatin is obtained. 

 

𝐸 = 𝐸∗ + 𝜌𝒖∗ ∙ (𝑽0 + 𝜴 × 𝒙) +
1

2
𝜌(𝑽0 + 𝜴 × 𝒙) ∙ (𝑽0 + 𝜴 × 𝒙) (2.12) 

 

Eq. (2.12) is divided by 𝜌 and differentiated with respect to the inertial frame: 

 

D(𝐸 𝜌⁄ )

D𝑡
=

D(𝐸
∗

𝜌⁄ )

D𝑡
+ [

D

D𝑡
{𝒖∗ ∙ (𝑽0 + 𝜴 × 𝒙)}]

𝐼
+

1

2
[
D

D𝑡
{(𝑽0 + 𝜴 × 𝒙) ∙ (𝑽0 + 𝜴 × 𝒙)}]

𝐼
 

 iv.  v. 

           (2.13) 

Here the first term in the right hand side of Eq. (2.9) can be written, using the velocity transformation 

between frames (2.1) and unit matrix 𝑰, as follows: 

 

 

The second and third terms in the right hand side of Eq. (2.13) can be rewritten, using the equation of 

motion, as follows: 

 

iv. [
D

D𝑡
{𝒖∗ ∙ (𝑽0 + 𝜴 × 𝒙)}]

𝐼
= 𝒖∗ ∙ [

D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
+ [

D𝒖∗

D𝑡
]
𝐼
∙ (𝑽0 + 𝜴 × 𝒙)  

 = 𝒖∗ ∙ [
D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
+ {[

D𝒖

D𝑡
]
𝐼
− [

D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
} ∙ (𝑽0 + 𝜴 × 𝒙)  

 = 𝒖∗ ∙ [
D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
+ {

1

𝜌
(−𝛁𝑝 + 𝛁 ∙ 𝑻) − [

D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
} ∙ (𝑽0 + 𝜴 × 𝒙)  

  = 𝒖∗ ∙ [
D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
+

1

𝜌
(−𝛁𝑝 + 𝛁 ∙ 𝑻) ∙ (𝑽0 + 𝜴 × 𝒙) − [

D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
∙ (𝑽0 + 𝜴 × 𝒙)  

 

v. 
1

2
[
D

D𝑡
{(𝑽0 + 𝜴 × 𝒙) ∙ (𝑽0 + 𝜴 × 𝒙)}]

𝐼
= [

D

D𝑡
(𝑽0 + 𝜴 × 𝒙)]

𝐼
∙ (𝑽0 + 𝜴 × 𝒙) 

 

Substituting relations ii, iii, iv and v for Eq. (2.9) with rearrangement leads to 

 

iii. −𝛁 ∙ (𝑝𝒖) + 𝛁 ∙ (𝑻 ∙ 𝒖) = 𝛁 ∙ {(−𝑝𝑰 + 𝑻) ∙ 𝒖}   

 −𝛁 ∙ (𝑝𝒖) + 𝛁 ∙ (𝑻 ∙ 𝒖) = 𝛁 ∙ {(−𝑝𝑰 + 𝑻) ∙ (𝒖∗ + 𝑽0 + 𝜴 × 𝒙)}  

 −𝛁 ∙ (𝑝𝒖) + 𝛁 ∙ (𝑻 ∙ 𝒖) = 𝛁 ∙ {(−𝑝𝑰 + 𝑻) ∙ 𝒖∗} +  𝛁 ∙ {(−𝑝𝑰 + 𝑻) ∙ (𝑽0 + 𝜴 × 𝒙)}  

 −𝛁 ∙ (𝑝𝒖) + 𝛁 ∙ (𝑻 ∙ 𝒖) = 𝛁 ∙ {(−𝑝𝑰 + 𝑻) ∙ 𝒖∗} + {𝛁 ∙ (−𝑝𝑰 + 𝑻)} ∙ (𝑽0 + 𝜴 × 𝒙)     

 (∵ 𝛁 ∙ (𝑽0 + 𝜴 × 𝒙) = 0)  
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𝜌
D(𝐸

∗

𝜌⁄ )

D𝑡
= −𝛁 ∙ (𝑝𝒖∗) + 𝛁 ∙ (𝑻 ∙ 𝒖∗) − 𝛁 ∙ 𝒒 − 𝜌𝒖∗ ∙ {

d𝑽0

d𝑡
+ 𝜴 × 𝒖∗ + 𝜴 × (𝜴 × 𝒙) +

d𝜴

d𝑡
× 𝒙} 

 

Since 𝒖∗ ∙ (𝜴 × 𝒖∗) = 0, we obtain the energy equation in the moving-coordinate system: 

 

𝜌
D(𝐸

∗

𝜌⁄ )

D𝑡
= −𝛁 ∙ (𝑝𝒖∗) + 𝛁 ∙ (𝑻 ∙ 𝒖∗) − 𝛁 ∙ 𝒒 

                          −𝜌𝒖∗ ∙ {
d𝑽0

d𝑡
+ 𝜴 × (𝜴 × 𝒙) +

d𝜴

d𝑡
× 𝒙} 

(2.14) 

 

In this section, the governing equations of fluid are derived for the general moving-coordinate 

method: the mass conservation equation, the equation of motion and the energy equation. The latter two 

equations have the structure where the source terms are added to the ordinary conservation lows. 

 

3     Computational methods 

 

3.1     Computational model 

 
In this study, the parachute is modeled by the two-dimensional, rigid and rectangular concave to 

aim for grasping basic phenomena. Here shown is the moving-coordinate system only rotating, although 

we derived that with the fully general case translating and rotating. 

Figures 3.1 shows the computation model. We observe the flow field from the 𝑥𝑦 coordinate system 

(the moving-coordinate system) that is attached to the moving body and has the origin at the center of 

rotation. When the body rotates as Figure 3.1 (a) in the standard coordinate system, the moving body 

stands still as Figure 3.1 (b) if we observe the flow field from the moving-coordinate system. 

 

 

 

 
(a) Observation from standard-coordinate system 

(Inertial frame) 

(b) Observation from moving-coordinate system 

(Accelerating frame) 

 

Figure 3.1: Computational models 
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3.2     Governing equation system and numerical scheme 
 

In the moving-coordinate methods, the two-dimensional, compressible Navier–Stokes equations are 

expressed in the differential form as follows: 

 

∂𝑈

∂𝑡
+

∂(𝐹 − 𝑅𝑒−1𝐹𝑣)

∂𝑥
+

∂(𝐺 − 𝑅𝑒−1𝐺𝑣)

∂𝑦
= 𝑆 (3.1) 

  

𝑈 = [

𝜌
𝜌𝑢
𝜌𝑣
𝐸

]  

  

𝐹 = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

(𝐸 + 𝑝)𝑢

] , 𝐹𝑣 =

[
 
 
 
 

0
𝜏𝑥𝑥
𝜏𝑥𝑦

𝜏𝑥𝑥𝑢 + 𝜏𝑥𝑦𝑣 +
1

𝑃𝑟 (𝛾 − 1)
(𝜅

∂𝑎2

∂𝑥
)
]
 
 
 
 

  

  

𝐺 = [

𝜌𝑣
𝜌𝑣𝑢

𝜌𝑣2 + 𝑝

(𝐸 + 𝑝)𝑣

] , 𝐺𝑣 =

[
 
 
 
 
 

0
𝜏𝑦𝑥

𝜏𝑦𝑦

𝜏𝑦𝑥𝑢 + 𝜏𝑦𝑦𝑣 +
1

𝑃𝑟 (𝛾 − 1)
(𝜅

∂𝑎2

∂𝑦
)
]
 
 
 
 
 

  

  

𝜏𝑥𝑥 = (𝜇 + 𝜇𝑠𝑔𝑠) {−
2

3
(
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
) + 2

∂𝑢

∂𝑥
} −

2

3
𝜌𝑘  

  

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = (𝜇 + 𝜇𝑠𝑔𝑠) (
∂𝑢

∂𝑦
+

∂𝑣

∂𝑥
)  

  

𝜏𝑦𝑦 = (𝜇 + 𝜇𝑠𝑔𝑠) {−
2

3
(
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
) + 2

∂𝑣

∂𝑦
} −

2

3
𝜌𝑘  

  

𝑆 =

[
 
 
 
 
 
 

0

𝜌 (𝜔2𝑥 + 2𝜔𝑣 + 𝑦
d𝜔

d𝑡
)

𝜌 (𝜔2𝑦 − 2𝜔𝑢 − 𝑥
d𝜔

d𝑡
)

𝜌 (𝜔2𝑢𝑥 + 𝜔2𝑣𝑦 − 𝑣𝑥
d𝜔

d𝑡
+ 𝑢𝑦

d𝜔

d𝑡
)]
 
 
 
 
 
 

 ,   𝑥 = 𝑥′ + 𝑙0  

  

Equation of state:  𝑝 = (γ − 1) {𝐸 −
1

2
𝜌(𝑢2 + 𝑣2)}  

 

where 𝑂′ − 𝑥′𝑦′ is the coordinate axes on the body with origin 𝑂′ at the central point of the front end 

of the body, 𝑂 − 𝑥𝑦 is the moving-coordinate system with origin 𝑂 at the center of rotation that is 

obtained by translating the origin from 𝑂′ to 𝑂 by 𝑙0 in −𝑥′ direction (see Figure 3.2). 𝑈 is the vector 

of conservative variables, 𝐹 and 𝐺 are the inviscid flux vectors in 𝑥 and 𝑦, 𝐹𝑣 and 𝐺𝑣 are the viscous 

flux vectors in 𝑥 and 𝑦, and 𝑆 is the source term vector appearing in the moving frame. 

The balance of moment about the center of rotation is written as follows (see Figure 3.2): 
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Figure 3.2:  Rotating system. 

 

 

where 𝐼 is the moment of inertia for the concave body, 𝜃 is the rotation angle of the body in standard-

coordinate system (See Figure 3.1), 𝑙𝑔 is the length between the pivot 𝑂 and the center of gravity of the 

body, 𝑙0 is the length between the pivot 𝑂 and the origin 𝑂′ of the coordinate axes on the body (the 

front end of the body), and 𝐹𝑡 is the fluid force tangential to the motion of the body.  

In general description, momentum 𝜌𝒖  and total energy 𝐸  are exchanged from the standard-

coordinate system I to the moving-coordinate system A by using Eqs. (2.1) and (2.12): 

 

(𝜌𝒖)𝐴 = (𝜌𝒖)𝐼 − 𝜌(𝑽0 + 𝜴 × 𝒙) (3.3) 

  

𝐸𝐴 = 𝐸𝐼 − 𝜌𝒖𝐼 ∙ (𝑽0 + 𝜴 × 𝒙) +
1

2
𝜌(𝑽0 + 𝜴 × 𝒙) ∙ (𝑽0 + 𝜴 × 𝒙) (3.4) 

 

Similarly, they are exchanged from the moving-coordinate system A to the standard coordinate system I by: 

 

(𝜌𝒖)𝐼 = (𝜌𝒖)𝐴 + 𝜌(𝑽0 + 𝜴 × 𝒙) (3.5) 

  

𝐸𝐼 = 𝐸𝐴 + 𝜌𝒖𝐴 ∙ (𝑽0 + 𝜴 × 𝒙) +
1

2
𝜌(𝑽0 + 𝜴 × 𝒙) ∙ (𝑽0 + 𝜴 × 𝒙) (3.6) 

 

Eq. (3.1) is numerically solved by the finite-volume method, where the third-order TVD Runge-

Kutta method is used for the time integration, the inviscid fluxes are evaluated by the seventh-order 

WENO scheme [12] with the HLLC flux Riemann solver, the viscous fluxes are evaluated by the 

second-order central difference, and the sub-grid scale Smagorinsky turbulence model are adopted. To 

obtain 𝜃 and 𝜔 = 𝑑𝜃/𝑑𝑡, the time integration is carried out by the Runge-Kutta method. 

 

3.3     Boundary conditions 
 

When the body does not rotate, inlet boundary conditions are set as follows: 

 

𝜌𝑖𝑛 = 1.0  

  

𝑝𝑖𝑛 =
1.0

𝛾
 

 

  

𝐼
d2𝜃

d𝑡2
= 𝑙𝑔𝐹𝑡 (3.2) 
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(
𝑢
𝑣
)
∞

= (
𝑀∞

0
)
𝐼,𝜃=0

  

 

Outlet boundary conditions are set as follows: 𝜌 , 𝜌𝑢  and  𝜌𝑣 are extrapolated with the zeroth-order. If 

the flow is supersonic (𝑀 ≥ 1), 𝐸 is extrapolated with the zeroth-order, and if it is subsonic (𝑀 < 1), 

 𝐸 is calculated by using the back pressure value 𝑝𝑜𝑢𝑡 given and the extrapolated values of 𝜌 , 𝑢 , 𝑣.  
 

𝐸 =
𝑝𝑜𝑢𝑡

𝛾 − 1
+

1

2
𝜌(𝑢2 + 𝑣2)  

 

When the body rotate, inlet boundary conditions are set as follows by using Eqs. (3.3) and (3.4): 

 

𝜌𝑖𝑛 = 1.0  

  

𝑝𝑖𝑛 =
1.0

𝛾
 

 

  

(
𝑢
𝑣
)
∗,∞

= (
  𝑀∞ cos𝜃 + 𝜔𝑦
−𝑀∞ sin 𝜃 − 𝜔𝑥 

)  

  

𝐸∗,∞ = 𝐸 + 𝜌𝜔{𝑀∞(𝑥 sin 𝜃 + 𝑦 cos 𝜃)} +
1

2
𝜌𝜔2(𝑥2 + 𝑦2) 

 

 

Outlet boundary conditions are evaluated, according to whether the flow is supersonic or subsonic 

in the standard-coordinate system: first, physical quantities at the boundary are transformed from the 

moving-coordinate system to the standard-coordinate system by using Eqs. (3.5) and (3.6); 𝜌 , 𝜌𝑢  and 

 𝜌𝑣 are extrapolated with the zeroth-order; if 𝑀 ≥ 1, 𝐸 is extrapolated with the zeroth-order, and if 𝑀 <

1,  𝐸 is calculated by using the back pressure given and the extrapolated values of 𝜌 , 𝑢 , 𝑣; after the 

above settings, the boundary values are transformed back to the moving coordinate system by using 

Eqs. (3.3) and (3.4).  

In the moving-coordinate method, boundary conditions on the wall surface of the body are same as 

the case of a stationary object with the wall velocity of zero. 

 

4     Computational conditions 
 

Figures 4.1 (a) and (b) show the grid view for the whole computational domain and the enlarged 

view around the concave body surrounded by the yellow line as a parachute model, respectively. x-

directional length inside the body is taken as the characteristic length, so that the length is unity on the 

grid in Fig. 4.1 (b). The number of grid is 485 in x-direction and 532 in y-direction, so that the detached 

shock wave should be located within the fine grid region surrounded by the red line in the vicinity of 

the body in Fig. 4.1 (a). 

The left side of the domain is the inlet boundary, and the right, upper and lower sides of the domain 

are treated as the outlet boundary. The Reynolds number is based on the characteristic length and the 

speed of sound in the uniform flow, and values of 𝑅𝑒 = 1.0 × 105  and 𝑀∞ = 3.0  are used in 

computations. The length between the pivot and the origin of the coordinate axes on the body is set to 

15. 
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(a) Grid 
(b) Enlarged view around 

concave body 

  

Figure 4.1:  Grid and concave body 

 

5     Computational Results 
 

Figures 5.1 (a) and (b) show time histories of information about the rotational motion of the body, 

𝜃 and 𝜔, and the lift coefficient, CL, respectively. Figure 5.1 (a) shows that it takes about 1100 in non-

dimensional time until appropriate flow fields are generated, starting from the initial state including 

incompatibilities; after about 1100 in time, a self-excited motion is induced physically. In the lift 

oscillations after about 1100 in time it is observed in Fig. 5.1 (b) that waves with high frequencies may 

be added to characteristics of the body motion with low frequencies. 

Figures 5.2 (a) to (i) show the pressure contours at each time during one period in the self-sustained 

motion induced in the supersonic flow with 𝑀∞ = 3.0. The pressure distributions are those in the 

standard coordinates transformed from the moving coordinates. Thus moving-coordinate method 

presented here was applied to the supersonic flow around a parachute-like body, and self-excited 

motions of the body were captured. 
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(a) Rotational motion of body: 𝜃 and 𝜔. 

 

 
(b) Lift coefficient: CL. 

 
Figure 5.1:  Time histories for rotational motion of body and coefficient of lift. 
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(a) Time = 1123.99 

with local maximum of θ 
(b) Time = 1140.47 

(c) Time = 1156.82 

in vicinity of θ=0 

   

   

(d) Time = 1174.62 
(e) Time = 1192.26 

with local minimum of θ 
(f) Time = 1203.15 

   

   
(g) Time = 1213.92 

in vicinity of θ=0 
(h) Time = 1224.71 

(i) Time = 1235.30 

with local maximum of θ 

   

Figure 5.2:  Pressure contours around body. 

 

6     Conclusion 
 

The moving-coordinate method presented by the authors is a methodology where physical 

phenomena are observed from the accelerating frame attached to a moving body. In this study, the 

moving-coordinate method is generalized by newly including both the translational and rotational 

motions of the frame. In the moving-coordinate method, as the moving body is observed to be 

stationary, the present method has advantages that there is no regeneration of the grid around the object 
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and no calculation error induced by moving grids.  

The governing equations of fluid are derived for the generalized moving-coordinate method: the 

mass conservation equation, the equation of motion and the energy equation. The latter two equations 

have the structure where the source terms are added to the ordinary conservation lows. Further, the 

transformations of momentum and total energy between the inertial frame and moving frame are 

presented. Moreover, the boundary conditions are shown to perform numerical computations on a 

moving body in supersonic flow fields. 

Thus present method was applied to supersonic flows around a parachute-like body, and the self-

excited motions of the body were captured. 
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