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Abstract: A front tracking method is developed to simulate the liquid-gas phase change phe-
nomenon during vaporization/evaporation process. One �eld formulation of the governing �ow,
energy and species equations are solved on an Eulerian grid with suitable jump conditions. Both
phases are assumed to be incompressible; however, the divergence-free velocity �eld condition is
modi�ed to account for the phase change/mass transfer at the interface. Interface/front separates
the phases and is composed of connected marker points that are tracked explicitly. Temperature
gradient based phase change model calculates the heat source/sink at the interface by apply-
ing the energy conservation principle. For the species gradient driven phase change model, the
Clausius-Clapeyron relation is used to �nd vapor mass fraction at the interface, which is subse-
quently used to �nd the mass �ux and heat �ux across interface. The implementation is validated
against standard test cases such as 1D Stefan problem and the evaporation of a 2D static droplet.
The non-dimensional evaporation mass �ux across the interface is validated against an analytical
model, assuming the interface temperature constant throughout the evaporation process. For a
water droplet evaporating in air, the numerical results of wet bulb temperatures are compared with
the psychrometric chart values and a good agreement is observed. Finally, 2D planar moving and
deforming droplets are made to evaporate for di�erent Eotvos (Eo) and Morton (Mo) Numbers.
The implementation is grid convergent and mass is globally conserved for all the studied cases.
The next step will be to incorporate chemical reactions into the present computational method
using �nite-rate chemical kinetic models.

Keywords: Front Tracking Method, Droplet Evaporation, Phase Change, Clausius-Clapeyron
Relation.

1 Introduction

Various kinds of multiphase �ows occur frequently in natural occurrences, industrial processes and biological
systems. A moving rain droplet in air, a rising gas bubble in the water bed, gas bubbles release and movement
in casting process, core annular �ows for oil/gas transportation in petroleum industries, �ows in pumps and
turbines etc. are some of the practical examples. A better understanding of the physics of these interfacial
�ows is the key for the design improvement and system e�ciency of systems involving such �ows.

Direct Numerical Simulation has proved to be a powerful tool that helped designers to optimize design
parameters to achieve excellent performance indicators. With the development of micro/nanoscale appli-
cations, the DNS has proved its importance since we can simulate the �ows and processes that are almost
impossible to study experimentally. Di�erent forms of governing �uid �ow equations are solved on suitable
underlying grid depending on the geometric con�guration. The main challenge in simulating interfacial �ows
is to accurately update the interface separating di�erent �uids in the �ow stream. Phase change process
adds another dimension to multiphase �ows. At the interface there is volume change associated with phase
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change process. Evaporation and condensation are the two phase change phenomena that are very important
from industrial applications point of view. Over the last two decades researchers have put e�orts in this �eld
to simulate the multiphase �ows with phase change. Volume of �uid (VOF) [6, 12], level set [9, 14] and front
tracking [4, 16] methods are the most common and well developed techniques to track or capture the �uid
interface.

A front tracking method developed by Unverdi and Tryggvason uses one-�eld formulation of governing
equations. The governing equations are solved on the �xed Eulerian grid whereas the interface is represented
by connected marker points that are tracked explicitly. The detailed implementation of this method is
discussed in [16, 15]. The method was �rst developed for buoyancy driven bubble. Juric and Tryggvason
studied liquid-solid phase change phenomenon i.e., dentritic solidi�cation [7], and the liquid-vapor phase
change i.e., �lm boiling [8]. Esmaeeli and Tryggvason made improvements in the previous developed method
for liquid-vapor phase change [1, 2].

In this paper, we present a front tracking method to simulate the liquid-vapor phase change owing to the
temperature or the species concentration gradient at the interface. This phenomenon, called evaporation,
occurs only at the surface. The governing �ow, energy and species equations are solved on staggered marker-
and-cell (MAC) grid. Source terms at the interface have been incorporated in the governing equations
using delta functions or by the application of proper boundary conditions at the interface. For temperature
gradient based phase change, heat �ux at the interface is calculated by the application of energy conservation
principle. For the species gradient based evaporation, the Clausius-Clapeyron equilibrium relation is applied
to ultimately �nd the species mass fraction at the interface. Interface, separating two phases, is represented
by connected marker points. The movement of front/interface marker points is contributed by both the local
�ow velocity and the heat �ux component. First, the results are presented for temperature gradient based
phase change model. The implementation is validated for 1D Stefan problem and the d2-law for 2D static
droplet case. The case of 2D gravity driven droplet is studied next for di�erent Eotvos (Eo) and Morton (Mo)
numbers. Next, we simulated the species concentration gradient based evaporation model. Non-dimensional
evaporation mass �ux is validated against a simpli�ed analytical model. The results of 2D planar droplets
moving under various �ow conditions are presented next. The grid convergence and global mass conservation
is demonstrated for the sample cases.

2 Mathematical Formulation

The one �eld formulation of the mass, momentum, energy and species conservation equations are expressed
as

∇ · u =
1

hlg

(
1

ρg
− 1

ρl

)∫
A

δ(x− xΓ)q̇ΓdAΓ, (1)

∂ρu

∂t
+∇ · (ρuu) = −∇p+ ρg+∇ · µ(∇u+∇uT ) +

∫
A

σκnδ(x− xΓ)dA, (2)

∂T

∂t
+ u · ∇T =

∇ · k∇T
ρcp

− 1

ρcp

[
1− (cp,g − cp,l)

Tsat
hlg

] ∫
A

δ(x− xΓ)q̇ΓdAΓ, (3)

∂Yα
∂t

+ u · ∇Yα = ∇ ·D∇Yα +
Ṡα
ρ

α = 1, 2, ..., ns . (4)

u is the velocity, hlg is the latent heat of vaporization and q̇Γ represents heat �ux per unit time at the
interface. Subscripts Γ, l and g represent the interface and the liquid and gas phases of a multiphase system,
respectively. p is the pressure, and ρ and µ are the discontinuous density and viscosity �elds, respectively. σ is
the surface tension, κ is twice the mean curvature, and n is a unit vector normal to the interface. The surface
tension acts only on the interface as indicated by the two-dimensional delta function δ whose arguments x
and xΓ are the point at which the equation is being evaluated and a point at the interface, respectively. T
is the temperature, cp is the speci�c heat at constant pressure and k is the thermal conductivity. Subscript
sat denotes the saturation value of the variable. Yα represents the mass fraction of species component α and
D is the mass di�usion coe�cient.
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The energy and species jump conditions must be satis�ed at the interface to ensure energy and mass
conservation across the interface. These are

ṁΓhlg = q̇Γ = kg
∂T

∂n

∣∣∣∣
g

− kl
∂T

∂n

∣∣∣∣
l

, (5)

ṁΓY
Γ
l − ṁΓY

Γ
g + ρgD

∂Y

∂n

∣∣∣∣
Γ

= 0. (6)

ṁΓ is the mass �ux per unit time across the interface. For a mono-component liquid droplet, Y Γ
l = 1 and

gradients of the species mass fraction are zero. Eq. (6) takes the form:

ṁΓ =
ρgD

∂Yvap

∂n

∣∣∣g
Γ

1− Y Γ
vap

. (7)

The vapor mass fraction at the interface, Y Γ
vap, is calculated using the Clausius-Clapeyron relation, i.e.,

pΓ
vap = patm exp

{
hlgmvap

R

(
1

TΓ
− 1

TB

)}
, (8)

Y Γ
vap =

pΓ
vapmvap

(patm − pΓ
vap)mg + pΓ

vapmvap
, (9)

where pΓ
vap is the saturated vapor pressure corresponding to the interface temperature TΓ. TB is the liquid

boiling temperature at the ambient pressure conditions patm. R is the gas constant. mvap and mg are the
molar masses of the water vapor and gas respectively.

We also assume that the material properties remain constant following a �uid particle, i.e.,

Dρ

Dt
= 0;

Dµ

Dt
= 0;

Dk

Dt
= 0;

Dcp
Dt

= 0, (10)

where D
Dt = ∂

∂t + u · ∇ is the material derivative. Indicator function I(x, t) tracks the liquid and the gas
phases both in space and time and is de�ned as:

I(x, t) =

{
1 in droplet phase,
0 in bulk phase.

(11)

The indicator function is computed using the standard procedure as described by Tryggvason et al. [15].
Then the density, viscosity, thermal conductivity and heat capacity �elds are updated in each time step
using the indicator function as:

ρ = ρlI(x, t) + ρg(1− I(x, t)); µ = µlI(x, t) + µg(1− I(x, t));

k = klI(x, t) + kg(1− I(x, t)); cp = cp,lI(x, t) + cp,g(1− I(x, t)). (12)

Interface location is updated at each time step by moving the interface marker points in the normal direction.
The velocity of each marker point comprises of the local �ow velocity and the velocity of vaporization, i.e.,

dxΓ

dt
= unnΓ, (13)

where

un =
1

2
(ul + ug) · n−

q̇Γ

2hlg

(
1

ρl
+

1

ρg

)
. (14)
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3 Results and Discussion

3.1 Temperature Based Model

3.1.1 1D Stefan Problem

One-dimensional Stefan problem is a well-known test case to validate the phase change model [2, 5, 3, 13, 17].
In this case, a vertical interface separates liquid and vapor phases. The vapor is on the left side of interface
and liquid is on the right side. When the temperature of the left wall of domain is increased, heat di�uses
towards the interface and evaporates the liquid near the interface. As a result the interface moves towards
right pushing the liquid away. The boundary condition on the right wall allows the liquid to freely leave the
domain. The vapor remains stationary during this process. Therefore the heat is transferred from the left
wall to the interface just by di�usion. The following form of energy equation is solved in the vapor phase
only with speci�ed boundary conditions

∂T

∂t
= αg

∂2T

∂x2
0 ≤ x ≤ xΓ(t), (15)

T (x = 0, t) = Tw T (x = xΓ(t), t) = Tsat . (16)

T is the temperature, αg is the thermal di�usivity of the vapor phase and xΓ(t) is the interface location at
time t. The analytical solution for the interface location at any time t can be expressed as

xΓ(t) = 2β
√
αgt , (17)

where β is the solution of the transcendental equation

β exp(β2) erf(β) =
cp,g(Tw − Tsat)

hlg
√
π

. (18)

The analytical value of temperature at any point x in the vapor domain and at any time instant t is given
by the expression

Tg(x, t) = Tw +

(
Tsat − Tw

erf(β)

)
erf

(
x

2
√
αgt

)
. (19)

We performed numerical simulations on a 1 × 1 domain. Results are presented for density ratio γ = ρl/ρg
= 20. The initial interface location is set as xΓ = 0.1, which corresponds to initial time to(γ). The initial
temperature �eld is speci�ed in the vapor phase using analytical solution, Eq. (19), at initial time to(γ).
Numerical and analytical results of interface location are shown in Fig. 1 alongwith the grid convergence
study.

3.1.2 2D Static Droplet

This test case simulates the evaporation of a 2D static planar droplet. Initial radius of droplet is 0.125 and it
is placed at the center of 1×1 domain. Temperature di�erence between the outside and the inside of droplet
is 5. This gradient causes evaporation and generates radial Stefan �ow. Vapor is allowed to leave the domain
freely, and a �xed temperature boundary condition is applied at the domain boundaries. The density and
the viscosity ratios are speci�ed as 10 and 14, respectively. Navier-Stokes equations are not solved for this
case. 160×160 grid resolution ensures grid independent results. Fig. 2 plots the reduction in area, i.e., the
squared diameter versus time. The squared diameter of the droplet varies linearly with time satisfying the
d2-law. For di�erent Stefan numbers the time history of squared diameter variation follows the results in
literature [10]

3.1.3 2D Moving Droplet

A 2D planar droplet is moving under the action of gravity, and evaporating due to temperature gradient.
Eotvos (Eo) and Morton (Mo) numbers de�ne the droplet shape evolution during motion, whereas the Stefan

4



0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

Time

In
te

rf
ac

e 
Lo

ca
tio

n

 

 

Analytical
16 x 16
32 x 32
64 x 64
128 x 128

100 120 140
0.32

0.36

0.4

 

 

Figure 1: The evolution of the interface location compared with analytical solution for γ = 20

Figure 2: Time history of droplet area for two Stefan numbers.

number (St) dictates the evaporation rate. The droplet (R = 0.125) center is initially placed at (0.5,3.6) in
1×4 domain resolved by 192×768 grid. Eo = 2.34, Mo = 1.6×10−5, St = 0.05, density and viscosity ratios are
10 and 14, respectively, for this test case. Wall boundary conditions are applied at the domain boundaries.
A grid convergence study yields grid independent results with this resolution. Fig 3 shows the temperature
contour plots at di�erent time instants. The life time of evaporating droplet is strongly dependent on the
droplet shape. As the droplet shape deviates from the spherical geometry, ratio of the surface area to the
volume of droplet increases. Thus more of the droplet surface is exposed to high temperature, resulting in
faster droplet evaporation.

3.2 Species Based Model

3.2.1 Evaporation Mass Flux - Validation

We consider a container partially �lled with water. The remaining part of container contains dry air. The
vapor gradient at the interface will drive the evaporation process.A convection-di�usion equation needs to be
solved to describe the species concentration �eld in the gas phase. In this simpli�ed test case, the temperature
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Figure 3: Temperature contour plots for a moving droplet at four time instants (time di�erence in each
frame = 0.5).

of liquid is assumed to be constant. The air far from the interface, at the end of container, is assumed to
be dry so vapor concentration is zero there. Also it is assumed that the evaporation does not reduce the
quantity of water and the water level stays �xed in the container. The evaporated mass is replenished exactly
and continuously. Furthermore, the surrounding gas is assumed to be insoluble in water so there is no net
transport of surrounding gas in the container. At steady state condition, the evaporation mass �ux per unit
time at the interface, ṁv, is given by [11]

ṁv =
ρgD

L
ln(1 +B), (20)

where B is the mass number given as

B =
Y Γ
vap − Y Lvap
1− Y Γ

vap

. (21)

Numerical and analytical results of non dimensional evaporation mass �ux ṁv/
ρgD
L are plotted against mass

transfer number as shown in �g. 4. It is clear that the numerical results approach the analytical pro�le as
we re�ne the grid.

3.2.2 Wet/Dry Bulb Temperature - Validation

The computational setup consists of a liquid droplet of initial diameter do = 0.25 mm held stationary at
the center of a 1 × 1 mm domain. Initially, the temperature (dry bulb temperature) is same throughout
the domain and the phase change occurs due to the species gradient at the interface resulting in a low
temperature/heat sink at the interface until a steady state temperature condition is attained at the interface,
called the wet bulb temperature. This wet bulb temperature is a function of the dry bulb temperature (DBT)
and the relative humidity (RH) in the air. A number of runs are performed for various combinations of dry
bulb temperatures and relative humidities. The numerical reults of wet bulb temperatures agree very well
with the psychrometric chart values as shown in �g. 5

6



Figure 4: Comparison of analytical and numerical results for non-dimensional evaporation mass �ux.

Figure 5: Numerical values of wet bulb temperatures compared with the psychrometric chart values for
various combinations of dry bulb temperatures and relative humidities, grid = 128 × 128.

3.2.3 2D Moving Droplet - Global Mass Conservation

We consider a droplet that evaporates and moves due to gravity g, and also deforms during the journey.
Initial diameter, do, is 0.25 mm. The domain size is 1 × 4 mm. The droplet is initially placed with its center
at (0.5,3.6) mm and starts from rest. Temperature is initialized as 353 K in the whole domain. Domain
boundaries are set as walls, whereas Dirichlet boundary conditions are speci�ed for temperature and vapor
mass fraction at walls as Tg = 353 K and Yvap = 0, respectively. Global mass conservation results are
presented in Fig. 6. It is observed that the global mass conservation error reduces as the grid is re�ned. The
order of accuracy is greater than one for this deformed droplet evaporation case as shown in �g. 7 which
shows the ability of our method to handle deformed interfaces.
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Figure 6: Global mass conservation error for a moving deforming evaporating droplet at various grid res-
olutions, The relevant nondimensional parameters are Eo = 5, Mo = 5 ×10−4, Sc = 0.707, γ = 5 and
ζ = 1.216

10
−2

10
−1

10
−3

10
−2

∆x/d
o

ε m
as

s

 

 

Mass reduction = 12%

slope = 1.62

Figure 7: The global mass error versus the non-dimensional grid size after 12% loss in the droplet mass, The
relevant nondimensional parameters are Eo = 5, Mo = 5 ×10−4, Sc = 0.707, γ = 5 and ζ = 1.216

4 Conclusions and Future Work

A front-tracking method is developed to simulate the liquid vapor phase change process. Both temperature
and species gradient based models are studied. Governing equations are solved in the whole domain for-
mulation on �xed grid. Results are presented �rst for the temperature gradient based phase change model.
Standard benchmark test cases i.e., Stefan problem and d2-law are performed to validate our implemen-
tation. Life time of droplet is strongly dependant on the droplet shape; and increases rapidly as droplet
deviates from the spherical geometry. For the species based model, evaporation mass �ux and the dry/wet
bulb temperature validation cases are performed which ensures the performance of the phase change and
thermal solvers. For a stringent case of moving, deforming and evaporating droplet, we performed global
mass conservation analysis. our implementation is grid convergent and mass is globally conserved.
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We are in the process to integrate chemical kinetics solver with our solver to simulate real world problems
including the droplet evaporation and combustion during spray combustion.
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