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Abstract: We present a front-tracking method developed for direct numerical simulations of
viscoelastic two-phase systems in which one or both phases could be viscoelastic. The method
is designed to incorporate virtually any viscoelastic �uid model belonging to the family of the
Oldroyd-B and FENE. The viscoelastic model equations are solved fully coupled with the �ow
equations within the front-tracking framework. The convective terms of the viscoelastic model
equations are approximated using a �fth order WENO-Z scheme that is found to be instrumental
for resolving the viscoelastic stress boundary layer near the interface. A log-conformation method
is employed to overcome the high Weissenberg number problem (HWNP) and found to be stable
and very robust for a wide range of Weissenberg numbers. The method has been �rst validated
for various benchmark single-phase and two-phase viscoelastic �ow problems. Then it has been
applied to study e�ects of viscoelasticity on drop dynamics in a capillary tube as well as on drop
impact and spreading on a solid wall.

Keywords: Front-Tracking Method, Viscoelasticity, Multiphase Flows, Micro�uidics, Moving
Contact Line.

1 Introduction

Understanding and modeling of viscoelastic �ows is of fundamental importance in a wide range of engineering
applications such as materials and food processing, pharmaceuticals, polymer blends and droplet-based
micro/bio-�uidics [1]. Mathematical models are usually based on the dumbbell assumption and results in
highly non-linear system of di�erential equations. Numerous studies of viscoelastic �ows using one or more
non-linear di�erential models with di�erent discretization techniques including �nite element, �nite di�erence
and �nite volume methods can be found in the literature [2]. It has been long recognized that modeling
of viscoelastic interfacial �ows is a challenging task mainly due to the existence of moving and deforming
interface separating phases and large disparity in time scales especially at high Weissenberg numbers. The
front-tracking method has been proven to be a viable tool for simulation of interfacial �ows with multi-physics
e�ects and successfully applied to a wide range of multiphase �ow problems [3, 4, 5, 6, 7].

In the present study, a �nite di�erence-front tracking method is developed for direct numerical simulation
of viscoelastic interfacial �ows. Although the method is general and applicable to virtually any interfacial
�ows involving viscoelastic �uids, our main goal is to understand the drop dynamics encountered or inspired
by micro/bio-�uidic applications. The method is designed to accommodate the generic family of viscoelastic
model equations including the Oldroyd-B, FENE-CR of Chilcott Rallison [8] and FENE-MCR of Coates
et al. [9]. The convective terms in viscoelastic constitutive equations are approximated using a �fth-order
upwinded WENO-Z [10] schemes. All the other spatial derivatives are approximated using central di�erences
on a staggered grid. The log-conformation method (LCM) is employed to overcome high Weissenberg number
problem. The method has been �rst validated for a benchmark single-phase problem of the start-up Poiseuille
�ow in a circular capillary tube. Then the method is applied to simulate the motion and deformation of a
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buoyancy-driven droplet in viscoelastic two-phase systems moving through a capillary tube. The results for
both single and two phase systems are found to be in good agreement with available analytical solution and
numerical results. Finally the method has been successfully applied to a more challenging cases involving
motion and deformation of a droplet in pressure-driven viscoelastic two-phase systems and viscoelastic drop
impact and spreading on a �at solid surface. The present numerical algorithm has been found to be very
robust and grid convergent with second-order spatial accuracy for all the cases considered in this paper.

2 Formulation and numerical method

The governing equations are described in the framework of the �nite-di�erence/front-tracking method. The
�ow is assumed to be incompressible. Following Unverdi and Tryggvason [11] and Izbassarov and Muradoglu
[5], a single set of conservation equations are solved for the entire domain including the dispersed and the
continuous phases. The continuity and momentum equations can be written as follows:

∇ · u = 0, (1)

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · µs(∇u +∇uT ) +∇ · τττ +

∫
A

γκnδ(x− xf )dA, (2)

where µs, ρ, p, u and τττ denote the solvent viscosity, the density, the pressure, the velocity vector and the
viscoelastic extra stress tensor, respectively. The last term in Eq. (2) represents the body force due to surface
tension where γ is the surface tension coe�cient, κ is twice the mean curvature, and n is the unit vector
normal to the interface. The surface tension acts only on the interface as indicated by the three-dimensional
delta function, δ, whose arguments x and xf are the points at which the equation is being evaluated and a
point at the interface, respectively.

The Oldroyd-B, FENE-CR and FENE-MCR models are adopted as the constitutive equations for the
viscoelastic extra stresses. These models can be written in a generic transport equation form as

λ

F

(
∂E

∂t
+∇ · (uE)− (∇u)T ·E−E · ∇u

)
+ E = S, (3)

where E can be extra stress or conformation tensor and S is a source term. In Eq. (3), F , S and τττ are
speci�ed in Table 1 for the three viscoelastic models considered in the present study. In this table, µp, λ, L,
F , I and τττ are the polymeric viscosity, the relaxation time, the ratio of the length of a fully extended polymer
dumbbell to its equilibrium length, the stretch function, the identity and extra stress tensors, respectively.
The conformation tensor is then de�ned as

A =
λ

µpF
τττ + I. (4)

Table 1: Speci�cation of the parameters F , S and τττ in Eq. (3).

Model F S τττ

Oldroyd-B 1 I µpF (E− I)/λ
FENE-CR L2/(L2 − trace(E)) I µpF (E− I)/λ
FENE-MCR (L2 + λtrace(E)/µp)/(L2 − 3) µp(∇u +∇uT ) E

Numerical solution of the viscoelastic constitutive equations is notoriously di�cult especially in two-phase
systems mainly due to the large disparity in time scales and discontinuous variation of viscoelastic properties
across the interfaces. To overcome these di�culties, the log-conformation method (LCM) developed by Fattal
and Kupferman [12] is employed. The LCM is used to overcome the well known high Weissenberg number
problem (HWNP). In this approach, Eq. (3) is rewritten in terms of the logarithm of the conformation tensor
through eigen-decomposition, i.e., ΨΨΨ = logA. This representation ensures the positive de�niteness of the
conformation tensor. The core feature of the formulation is the decomposition of the gradient of divergence
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free velocity �eld ∇uT into two anti-symmetric tensors denoted by ΩΩΩ (pure rotation) andN, and a symmetric
tensor denoted by C which commutes with the conformation tensor [12], i.e.,

∇uT = ΩΩΩ + C + NA−1. (5)

Inserting Eq. (5) into Eq. (3) and replacing the conformation tensor with the new variable ΨΨΨ, the transformed
constitutive equations can be written as

∂ΨΨΨ

∂t
+∇ · (uΨΨΨ)− (ΩΩΩΨΨΨ−ΨΨΨΩΩΩ)− 2C =

F

λ
(e−ΨΨΨ − I). (6)

This equation is integrated using an explicit Euler scheme, i.e.,

ΨΨΨn+1 = ΨΨΨn + ∆t

(
−∇ · (uΨΨΨ) + (ΩΩΩΨΨΨ−ΨΨΨΩΩΩ) + 2C +

F

λ
(e−ΨΨΨ − I)

)n

, (7)

where the spatial derivatives are again approximated using central di�erences except for the convective
terms for which a �fth-order upwinded WENO-Z [10] scheme is employed. The conformation tensor is then
obtained using the inverse transformation as A = eΨΨΨ.

The �ow equations are solved fully coupled with the viscoelastic model equations using the front-tracking
method developed by Izbassarov and Muradoglu [5]. A complete description of the front tracking method
can be found in Tryggvason et al. [3] and the treatment of the viscoelasticity can be found in Izbassarov and
Muradoglu [5].

3 Results and Discussion

3.1 Validation

The method is �rst validated for viscoelastic single-phase �ows. The test case concerns with the start-up
Poiseuille �ow of an Oldroyd-B �uid in a circular pipe. Waters and King [13] �rst studied this problem and
provided analytical solutions both for the transient and steady-state cases. Thus it serves an ideal test case
for validation of the present numerical method. Computations are performed for three di�erent Weissenberg
numbers, i.e., Wi = 1, 10 and 100. Figure 1a shows the velocity pro�les at various dimensionless times for
Wi = 10. The evolution of the centerline velocity is plotted in Fig. 1b forWi = 1, 10 and 100. As can be seen
in these �gures, there is excellent agreement between the computational and analytical results indicating the
accurate solution of the viscoelastic model equations.

The method is then validated for the buoyancy-driven viscoelastic droplet systems studied computation-
ally by You et al. [14]. The FENE-CR model is employed in the present simulations to facilitate direct
comparison with the results of You et al. [14]. Note that You et al. [14] de�ned a slightly di�erent con-
formation tensor that is related to A as B = A − I. The constant contours of the component Bzz of the
conformation tensor are plotted in Fig. 2 in the vicinity of the droplet in a steady motion for a viscoelastic
droplet in a Newtonian medium (VN) and a Newtonian droplet in a viscoelastic medium (NV), together
with the computational results of You et al. [14]. These �gures show that a Newtonian drop immersed in
a viscoelastic �uid experiences an extending trailing edge while a viscoelastic drop in a Newtonian �uid
develops an indentation around the rear stagnation point. Moreover, in both cases, there is a thin layer
at the interface in the leading and trailing edges of the droplet where the viscoelastic stress concentration
occurs with a sharp gradient due to large polymer extensions. These results are overall in good qualitative
and quantitative agreement with the computational simulations of You et al. [14].

3.2 Pressure-driven viscoelastic two-phase systems in a capillary tube with sud-

den contraction and expansion

The method is then applied to study the viscoelastic two-phase systems in a capillary tube with a sudden
contraction and expansion. Sample results are shown in Fig. 3 where the transient motion of a FENE-CR
droplet moving through a Newtonian �uid is shown. As seen, just before entering the constriction, the
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Figure 1: The start-up Poiseuille �ow: (a) The velocity pro�les at di�erent non-dimensional times for
Wi = 10. (b) The evolution of centerline velocity for Wi = 1, 10 and 100. The symbols represent the
computational results and the solid lines are the analytical solution of Waters and King [13].

viscoelastic stress concentration occurs at the shoulder of the droplet that acts against the viscous stresses
to restore the indentation of the trailing edge. The re-entrant cavity grows continuously while the droplet
is in the narrow channel and the entrained ambient �uid is eventually encapsulated within the main drop
to form a bigger compound drop. It is evident that viscoelastic e�ects are important for the development of
the re-entrant cavity. Therefore, further simulations are performed for various Wi numbers, and the results
are shown in Fig. 4. It is interesting to observe that the viscoelasticity has a non-monotonic e�ect on the
drop deformation, i.e., the size of the re-entrant cavity and resulting inner droplet �rst decrease and then
increase with Wi.

3.3 Drop Impact and Spreading on a Solid Surface

Finally, we apply the method to study a viscoelastic drop impacting and spreading on a solid surface. Besides
its practical importance, this problem is interesting since it involves a moving contact line making the problem
a more di�cult test case for the numerical method. Sample results are shown in Fig. 5 where the evolution
of drop shapes are plotted for Wi = 0 (Newtonian), Wi = 1 and Wi = 10. As can be seen, the magnitude of
the viscoelastic stresses monotonically increases as Wi is increased. However, unlike the Oldroyd-B model,
the FENE-CR model bounds the growth of the viscoelastic stresses. Therefore the increase in the stresses
gets smaller when Wi exceeds a threshold value, i.e., when Wi ≥ 10 in this case. It is interesting to see that
the viscoelasticity favors spreading of the droplet and the viscoelastic droplet tends to spread more than that
of the Newtonian one, which is in agreement with the computational results of Tome et al. [15] and Fang et
al. [16]. Whilst, there is no signi�cant di�erence betweenWi = 1 andWi = 10 cases in the advancing phase.
However, in the retraction phase, the di�erence gets more pronounced and the retraction becomes faster as
Wi increases. When the retraction velocity is fast enough, the �uid rises up from the center of droplet
forming a dome, which may even lead to a complete rebound from the substrate, see e.g., the Wi = 10
case in Fig. 5. A part of the initial kinetic energy is stored as the elastic energy in the viscoleastic drop
during the advancing phase, which reduces the available energy for dissipation. This elastic energy is then
released during the recoiling phase contributing to the drop rebound. This �nding is in agreement with the
experimental observation of Bertola [17]. An extensive study on the e�ects of viscoelasticity on drop impact
and spreading on a solid surface can be found in Izbassarov and Muradoglu [7].
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Figure 2: The steady droplet shapes and the constant contours of the conformation tensor component Bzz

for a buoyancy-driven FENE-CR droplet rising in a Newtonian �uid (left) and Newtonian droplet rising in
a FENE-CR �uid (right). The present results (left portion) are compared with the results of You et al. [14]
(right portion). (Re = 10, Ca = 50,Wi = 50, Grid : 128× 1184).

t∗ = 65.7 t∗ = 68.4 t∗ = 69.3 t∗ = 73.9 t∗ = 78.4

t∗ = 80.3 t∗ = 83.9 t∗ = 86.6 t∗ = 95.8 t∗ = 123.1

Figure 3: A FENE-CR droplet moving through a Newtonian �uid in a pressure driven contraction/expansion
capillary tube. The contours represent the average polymer extension

√
trace(A). (Ca = 0.1, Re = 2,Wi =

100, θ = 40, Grid : 64× 768).
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Wi = 0 Wi = 1 Wi = 10 Wi = 100

Figure 4: The e�ects of �uid elasticity on drop deformation at a high viscosity ratio of θ = 40 for the NN
and VN cases. The droplet shapes and the constant contours of the average polymer extension

√
trace(A)

are plotted in the vicinity of the droplet in the middle of the constriction (bottom plots) and in the further
downstream of the expansion region (top plots). (Ca = 0.1, Re = 2, κ = 1.25, Grid : 64× 768).
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Figure 5: E�ects of Wi on drop impact. The time evolution is from top to bottom. The velocity vectors are
plotted on the left and the contours of average polymer extension

√
trace(A) on the right. The snapshots

are taken at the times t∗ = 0.7, 1.3, 5.0, 7.5. (Re = 35,We = 30, L2 = 225, c = 1.27 and θe = 145◦).

7



4 Conclusion and Future Work

A front-tracking method is developed for direct numerical simulations of viscoelastic interfacial �ows. The
log-conformation scheme is used to integrate the viscoelastic constitutive equations in time and is found to
be very robust for a wide range of Weissenberg numbers. The method is �rst validated for single-phase
viscoelastic �ows including a startup �ow in a circular channel. Then it is applied to buoyancy-driven
motion of viscoelastic two-phase systems. The results are compared and found to be in good qualitative
and quantitative agreement with the computational simulations of You et al. [14]. Finally the method
is applied to study more challenging cases such as the motion of viscoelastic droplet in a pressure-driven
contraction/expansion channel and viscoelastic impact and spreading on a solid surface. It is found that
log-conformation method is convergent and very robust for a wide range of Weissenberg numbers.

The future work includes the application of the present method to study the e�ects of viscoelasticity on
impact of a compound droplet on a �at surface and on a drop formation in a �ow focusing con�guration.
Moreover, a new front-tracking method will be developed for direct numerical simulations of viscoelastic
single and multiphase �ows in full 3D.
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